
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le (05/07/2021) par :
Victor David

Dealing with Similarity in Argumentation

Jury
LEILA AMGOUD Directrice de Recherche

(DR1) - CNRS, IRIT
Directrice de Thèse

PIETRO BARONI Professeur - Université de
Brescia

Rapporteur

SALEM BENFERHAT Professeur - Université
d’Artois, CNRS, CRIL

Rapporteur

MARIE-CHRISTINE

LAGASQUIE-SCHIEX

Professeur - Université Paul
Sabatier, IRIT

Présidente du Jury

SERENA VILLATA Chargé de recherche (CR1) -
CNRS, Centre de recherche à

Sophia Antipolis

Examinatrice

NICOLAS MAUDET Professeur - Sorbonne
Université, LIP6

Examinateur

École doctorale et spécialité :
MITT : Domaine STIC : Intelligence Artificielle

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)



2



i

Remerciements

UN maître, ce n’est pas celui qui donne des leçons, mais celui qui pousse son élève à
donner le meilleur de lui-même.

Durant cette thèse, j’ai reçu une formation technique de grande qualité ainsi que les
rudiments du processus de recherche. Cependant, cela n’aurait pas eu la même valeur
sans un enseignement personnalisé. C’est pour cela, que je tiens à remercier tout d’abord
Leila AMGOUD, qui m’a appris énormément sur le métier de chercheur et également
sur moi-même. J’ai eu la chance d’être accompagné selon mes qualités et défauts. Je suis
également très reconnaissant pour toutes les heures que l’on a passées à discuter et pour
toutes les remarques constructives qui m’ont poussé à m’améliorer.

Un grand merci à Marie-Christine LAGASQUIE-SCHIEX, d’avoir accepté la prési-
dence de mon jury et de m’avoir fait découvrir le monde de la recherche et de l’argumenta-
tion dès ma Licence III.
Je remercie également mes rapporteurs Salem BENFERHAT et Pietro BARONI pour leur
relecture attentive et leurs précieux commentaires ainsi qu’aux examinateurs Serena VIL-
LATA et Nicolas MAUDET pour leurs analyses et leurs questions pertinentes durant la
soutenance.
Je souhaite remercier mes anciens encadrants de Master II, Sylvie DOUTRE, Philippe
BESNARD et Dominique LONGIN qui m’ont également beaucoup appris sur ces théma-
tiques. J’ai énormément apprécié leur écoute pendant toutes nos réunions et discussions
me permettant d’explorer nombre de mes idées.
Je remercie aussi tout particulièrement Dragan DODER, avec qui j’ai eu le plaisir de tra-
vailler pendant un peu plus d’un an. Nos discussions très enrichissantes m’ont beaucoup
apporté.

En ce qui concerne les doctorants (Julien, Mickaël, P-F, Maël - RIP, Elise, Nicolas,
Fabien, Estelle), je vous remercie de m’avoir accompagné pendant cette aventure, pour la
bonne ambiance de travail et pour les nombreux bons moments passés ensembles.



ii

Je voudrais également remercier toutes les personnes extérieures au domaine univer-
sitaire qui m’ont, à leur façon, apporté leur aide.
En premier lieu, je remercie les membres de ma famille qui ont su croire en moi et qui
m’ont apporté toute leur aide depuis mon enfance.
Je remercie ensuite ma belle-famille qui m’ont apporté un grand soutien durant cette thèse.
Enfin, que ce soit pendant un doctorat ou plus généralement dans une vie, il est important
d’avoir un certain équilibre afin de ne pas perdre pied. Je souhaite remercier tous mes
amis, sur qui j’ai pu compter dans les moments difficiles (ou de joie), Zac, Tristan, Dudu,
Ghita, Victor, Pauline(s), Léopold, Damien, Pedro, Raphaël, Cindy, Arnaud, Flo, Lucas,
Etienne et Arthur ; merci !
J’en oublie certainement encore et je m’en excuse.

Pour terminer, cette thèse ne se serait jamais déroulée comme cela sans l’aide pré-
cieuse, la présence et le soutien de Jessica.

Jessica cette thèse t’est dédiée.



iii

Résumé

LE raisonnement argumentatif est basé sur la justification d’une conclusion plausi-
ble par des arguments en sa faveur. L’argumentation est un modèle prometteur

pour raisonner avec des connaissances incertaines ou incohérentes, ou, plus générale-
ment de sens communs. Ce modèle est basé sur la construction d’arguments et de contre-
arguments, la comparaison de ces arguments et enfin l’évaluation de la force de chacun
d’entre eux.

Dans cette thèse, nous avons abordé la notion de similarité entre arguments. Nous
avons étudié deux aspects : comment la mesurer et comment la prendre en compte dans
l’évaluation des forces.

Concernant le premier aspect, nous nous sommes intéressés aux arguments logiques,
plus précisément à des arguments construits à partir de bases de connaissances proposi-
tionnelles. Nous avons commencé par proposer un ensemble d’axiomes qu’une mesure
de similarité entre des arguments logiques doit satisfaire. Ensuite, nous avons proposé
différentes mesures et étudié leurs propriétés.

La deuxième partie de la thèse a consisté à définir les fondements théoriques qui
décrivent les principes et les processus impliqués dans la définition d’une méthode d’évalu-
ation des arguments prenant en compte la similarité. Une telle méthode calcule la force
d’un argument sur la base de forces de ses attaquants, des similarités entre eux, et d’un
poids initial de l’argument. Formellement, une méthode d’évaluation est définie par trois
fonctions dont une, nommée "fonction d’ajustement", qui s’occupe de réajuster les forces
des attaquants en fonction de leur similarité. Nous avons proposé des propriétés que
doivent satisfaire les trois fonctions, ensuite nous avons défini une large famille de méth-
odes et étudié leurs propriétés. Enfin, nous avons défini différentes fonctions d’ajustement,
montrant ainsi que différentes stratégies peuvent être suivies pour contourner la redon-
dance pouvant exister entre les attaquants d’un argument.

Mots clefs: Argumentation Abstraite, Argumentation Logique, Similarité, Séman-
tiques Graduelles
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Abstract

ARGUMENTATIVE reasoning is based on justifying a plausible conclusion with argu-
ments in its favour. Argumentation is a promising model for reasoning with uncer-

tain or inconsistent knowledge, or, more generally, common sense. This model is based on
the construction of arguments and counter-arguments, the comparison of these arguments
and finally the evaluation of the strength of each of them.

In this thesis, we have tackled the notion of similarity between arguments. We have
studied two aspects: how to measure it and how to take it into account in the evaluation
of strengths.

With regards to the first aspect, we were interested in logical arguments, more pre-
cisely in arguments built from propositional knowledge bases. We started by proposing a
set of axioms that a similarity measure between logical arguments must satisfy. Then, we
proposed different measures and studied their properties.

The second part of the thesis was focused on defining the theoretical foundations that
describe the principles and processes involved in the definition of an evaluation method
for arguments, which takes similarity into account. Such a method computes the strength
of an argument based on the strengths of its attackers, the similarities between them, and
an initial weight of the argument. Formally, an evaluation method is defined by three
functions, one of which (called the adjustment function) is concerned with readjusting
the strengths of the attackers according to their similarity. We have proposed properties
that the three functions must satisfy, after which we have defined a large family of meth-
ods and studied their properties. At last, we have defined different adjustment functions,
showing that different strategies can be applied to avoid the redundancy that can exist
between the attackers of an argument.

Keywords: Abstract Argumentation, Logical Argumentation, Similarity, Gradual Se-
mantics
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Introduction

ARGUMENTATION is a reasoning approach based on the justification of claims by
arguments, i.e. reasons for accepting claims. It has received great interest from the

Artificial Intelligence community since late 1980s, namely as a unifying approach for
nonmonotonic reasoning (Lin and Shoham [1989]). It was later used for solving different
other problems like reasoning with inconsistent information (eg. Simari and Loui [1992];
Besnard and Hunter [2001]), decision making (eg. Zhong et al. [2019]), classification
(eg. Amgoud and Serrurier [2008]), negotiation (Sycara [1990]; Hadidi et al. [2010]),
etc. Argumentation has also several practical applications, namely in legal and medical
domains (see Atkinson et al. [2017] for more applications).

Whatever the problem to be solved, an argumentation process follows generally four
main steps:

1. justify claims by arguments,

2. identify (attack, support) relations between arguments,

3. evaluate the strength of arguments, and

4. define an output.

The last step depends on the results of the evaluation. For instance, an inference system
draws formulas that are justified by what is qualified at the evaluation step as “strong” ar-
guments. Evaluation of arguments is thus crucial as it impacts the outcomes of argument-
based systems. Consequently, a plethora of methods, called semantics, have been pro-
posed in the literature.

The very first ones are extension-based (Dung [1995]) and the recent ones are grad-
ual semantics (Cayrol and Lagasquie-Schiex [2005]) that quantify strength and ascribe a
value (representing strength) to every argument. Both families of semantics may take into
account attacks and/or supports between arguments, weights on arguments, which can
represent votes (Leite and Martins [2011]) or certainty degrees (Benferhat et al. [1993]),
weights on links between arguments, which can represent relevance (Dunne et al. [2011])
or again votes of users (Egilmez et al. [2013]). However, none of the existing semantics
is able to handle similarity between arguments.
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Similarity is related to commonality, in that the more commonality two arguments
share, the more similar they are. In practice, existence of similarity is inevitable as argu-
ments generally share information like the following two ones that are exchanged during
a dialogue between two people who want to buy a house.

A1: The house h1 is good since it has a big garden.

A2: The house h1 is better than the house h2 since its garden has enough space for
planting various fruit trees.

The two arguments (A1, A2) are quite similar since they have the same evidence (the
garden being big) but different conclusions.

In this thesis, we tackled two main research questions:

• How to measure similarity between two arguments?

• What is the impact of similarity on the evaluation of arguments? And how to define
semantics that are able to deal properly with similarity?

Focusing on logical arguments, i.e, arguments built from propositional knowledge
bases, we defined the notion of similarity measure, as well as a set of principles that a
measure should satisfy. Some principles describe rational behavior of a measure while
others are about the origin of similarity between arguments. As a second contribution, we
extended in various ways existing measures from the literature, namely the well-known
Jaccard measure (Jaccard [1901]), Dice measure (Dice [1945]), Sorensen one (Sørensen
[1948]), and their other refinements proposed in (Anderberg [1973]; Sneath et al. [1973];
Ochiai [1957]; Kulczynski [1927]), and studied their properties.

Regarding the second research question, we have shown that ignoring (total or partial)
similarities would lead to inaccurate evaluations of arguments, and thus to wrong recom-
mendations by argumentation systems. Hence, developing semantics that are able to take
into account similarity is crucial for discarding any redundancy.

In the second part of the thesis, we discussed theoretical foundations that describe
principles and processes involved in the definition of gradual semantics that deal with
similarity, and we proposed a general setting for defining systematically such semantics.

A semantics computes the strength of an argument on the basis of the strengths of
its attackers, similarities between those attackers, and an initial weight ascribed to the
argument. It is defined using three functions:

• an adjustment function that updates the strengths of attackers on the basis of their
similarities,
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• an aggregation function that computes the strength of the group of attackers, and

• an influence function that evaluates the impact of the group on the argument’s initial
weight.

We proposed intuitive constraints for the three functions and key rationality principles
for semantics, and showed how the former lead to the satisfaction of the latter. Then, we
proposed a broad family of semantics whose instances satisfy the principles. Finally, we
proposed various adjustment functions and analysed their properties.

The document is organised as follows:

1. In Chapter 1 (Background), the required knowledge to understand our work is pre-
sented. We introduce the elements of an argumentation framework and the different
families of semantics existing in the literature. Then, we explain the importance
of dealing with the notion of similarity in the argumentation process. Finally, we
discuss existing works on similarity.

2. In Chapter 2 (Similarity Measures for Logical Arguments), we propose a set of
principles that a similarity measure between logical arguments should satisfy. Fur-
thermore, we highlight the problem of non-concise arguments which disturbs the
assessment of the degree of similarity. Then, different families of similarity mea-
sures for concise and non-concise arguments are proposed and analyzed according
to the principles.

3. In Chapter 3 (Graduated Semantics dealing with similarity), we present a gen-
eral setting composed by three functions defining gradual semantics dealing with
a similarity measure. We propose also a set of principles for these three functions.
Then we focus on the novel adjustment function with some instantiations and anal-
yses.

4. In Chapter 4 (Conclusions), we summarize and highlight the important contribu-
tions of this thesis, to finally give several possible directions to extend this research.

5. Finally, in Chapter 5 (Appendix), there is the proofs related to the contributions in
chapters 3 and 4.
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THIS first chapter presents the different useful notions to the comprehension of this
document. We will first see what an argumentation framework consists of, then
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how to evaluate arguments, and finally we will introduce in more details the problematic
of this thesis, which is how to integrate the notion of similarity to this framework and
these evaluation methods.

1.1 Argumentation Frameworks

An argumentation framework is composed of arguments, relations between these argu-
ments, preferences between arguments and also between relations.

1.1.1 Arguments

The backbone of an argumentation framework, is the notion of argument. An argument is
a reason for believing or accepting a given claim. It is made of three elements:

1. A set of premises, that are intended to support the claim.

2. A conclusion, which is the claim being justified by the premises.

3. A link that allows the conclusion to follow from the premises.

There are at least two families of arguments depending on the nature of the link relat-
ing the conclusion to the premises:

• Inductive arguments such that the truth of their premises makes the truth of their
conclusion more or less likely.

• Deductive arguments such that the truth of their premises guarantees the truth of
their conclusion.

Example 1. An example of an inductive and an deductive argument is the following:

• Inductive: Joe will win the elections (conclusion), because 52% of the sampled

voters said they will vote for Joe (premise).

• Deductive: Joe has DNA because Joe is human and humans have DNA.

Note that the conclusions of deductive arguments are more likely than those of in-
ductive arguments as their links are much stronger. However, this is not sufficient for a
deductive argument to be strong. It should additionally satisfy the following criteria:

• The link should be valid in the sense that if the premises are true, the conclusion
cannot be false.
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• The premises should be true.

• The premises should be relevant to the conclusion.

Example 2. Consider the arguments A,B,C below:

A: Karl is a philosopher because he has a brain and, every philosophers has a brain.

B: Harrison is brown because he is an actor and all actors are brown.

C: 1 + 1 = 2 because grass is green.

Note that the link in A is not valid, in B the premise "all actors are brown" is false and

the premise of the argument C is completely irrelevant to its conclusion. Thus, the three

arguments are weak.

1.1.2 Attacks and Supports

Such flaws in the arguments give birth to attacks. Indeed, an argument may attack another
argument, undermining thus one of its components (premises, conclusion, link). This at-
tack relation is clearly negative as it may be harmful for the attacked argument.

Example 2 (Cont.) For instance, the following argument D attacks B:

D: All actors are not brown since Brad is an actor and is not brown.

This argument claims that the premise "all actors are brown" is false and justifies this by

an evidence "Brad is an actor and is not brown".

An argument may also support another arguments. The idea is to endorse the con-
clusion (respectively premises, link) of the argument. This support relation is a positive
interaction, which increases the confidence of the supported argument.

Example 2 (Cont.) For instance, the following argument E supports D:

E: Brad is an actor and is not brown since he was blond in the movie "Seven".

This argument confirms the premise of the argument D.

The support relationship is an important notion in argumentative frameworks but not
always necessary. For a first study taking into account similarity, we chose to start without
this relation. Thus, in the rest of the document we will ignore it.
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1.1.3 Extended Argumentation Frameworks

An argument may also have an initial weight that may represent different issues. It may
represent a certainty degree Benferhat et al. [1993], a degree of trustworthiness of the
source that provided the argument da Costa Pereira et al. [2011], an aggregation of votes
provided by users Leite and Martins [2011], an importance degree of the values promoted
by the arguments Bench-Capon [2003], etc.

Like arguments, attack relations may also be weighted. In Dunne et al. [2011], dif-
ferent reasons for assigning weights to attacks have been discussed. The most prominent
ones are relevance, i.e., a weight of an attack expresses to what extent the source of the
attack is relevant to the attacked argument. In Egilmez et al. [2013], a weight of an attack
represents an aggregation of votes provided by users.

An argumentation framework (AF), called also argumentation graph, is a tuple made
of a finite set of arguments, an attack relation, an initial weight of each argument, and a
weight of every attack. It is represented as a graph whose nodes are the arguments, and
edges are the attack relation. Before introducing formally the notion of an argumentation
framework, let us first introduce the notion of Weighting.

Definition 1 (Weighting). A weighting on a set X is a function from X to [0,1].

It is worthy to recall that other scales can be used. But, for the sake of simplicity,
throughout the document we use the unit interval [0, 1].

Let us now introduce the notion of weighted argumentation framework or weighted
argumentation graph. Let Arg denote the universe of all possible arguments.

Definition 2 (Weighted argumentation framework). A Weighted argumentation frame-

work is an ordered tuple AF = 〈A,w,R, σ〉, where

• A ⊆f 1 Arg (A being a non-empty finite subset of Arg),

• w is a weighting on A (it assigns initial weights to arguments),

• R ⊆ A×A (it is an attack relation), and

• σ is a weighting onR (it assigns weights to attacks).

Let AF = 〈A,w,R, σ〉 be a weighted argumentation framework and A,B ∈ A.
The notation (B,A) ∈ RmeansB attacksA orB is an attacker ofA, and Att(A) denotes

1The notation A ⊆f Arg stands for: A is a finite subset of Arg.
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the set of all attackers of A, i.e., Att(A) = {B ∈ A | (B,A) ∈ R}.
w(A) is the initial weight of A and σ((A,B)) is the weight of (A,B) ∈ R.
If ∀A ∈ A, w(A) = 1, we write w ≡ 1, and if ∀r ∈ R, σ(r) = 1, we write σ ≡ 1.

Definition 3 (Semi-weighted and flat AF). Let AF = 〈A,w,R, σ〉 be a weighted argu-

mentation framework.

• If σ ≡ 1, then AF is called semi-weighted.

• If w ≡ 1 and σ ≡ 1, then AF is called flat.

Let us illustrate the above notions by a simple example.

Example 3. Consider a debate on how to reduce a country’s debts.

A: Increasing taxes, decreasing financial market borrowing and allowing govern-

ment to finance itself through money creation, reduce the country’s debt.

B1: For a better living standards for all, taxes must not be increased.

B2: To improve the quality of life, taxes must not be increased.

B3: For a better healthcare and social justice, taxes must not be increased.

B4: The purpose of borrowing is to prevent the inflation caused by money creation,

therefore decreasing financial market borrowing and allowing government to fin-

ance itself through money creation do not imply a reduction of the debt.

This debate is represented by the graph G1 below.

B1 B2 B3 B4

A

Figure 1.1: Argumentation graph G1

Suppose that each argument is given an initial weight based on a voting score.

For instance:

w(A) = 0.7, w(B1) = 0.3, w(B2) = 0.3, w(B3) = 0.4, w(B4) = 0.5

Assume also that the weight of an attack expresses a degree of relevance, and

σ(B1, A) = 0.6, σ(B2, A) = 0.6, σ(B3, A) = 0.6, σ(B4, A) = 0.9
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Let us now introduce the useful notion of path in graph.

Definition 4 (Path). Let AF = 〈A,w,R, σ〉 be a weighted argumentation framework

and A,B ∈ A. A path from A to B is a finite non-empty sequence 〈X1, · · · , Xn〉 such

that X1 = A, Xn = B and ∀i < n, (Xi, Xi+1) ∈ R.

We also define an isomorphism between two weighted argumentation frameworks as
follows.

Definition 5 (Isomorphism of weighted argumentation frameworks). Let AF = 〈A,w,R,
σ〉 and AF′ = 〈A′,w′,R′, σ′〉 be two weighted argumentation graphs. An isomorphism

from AF to AF′ is a bijective function f from A to A′ such that: i) ∀A ∈ A, w(A) =
w′(f(A)), ii) ∀A,B ∈ A, (A,B) ∈ R iff (f(A), f(B)) ∈ R′, and σ((A,B)) = σ′((f(A),
f(B))).

Finally, we define the merging of two argumentation frameworks as follows.

Definition 6 (Merging of weighted argumentation frameworks). Let AF = 〈A,w,R, σ〉
and AF′ = 〈A′,w′,R′, σ′〉 be two weighted argumentation frameworks. AF ⊕ AF′

denotes the weighted argumentation graph 〈A∪A′,w′′,R∪R′, σ′′〉 such thatA∩A′ = ∅,
∀A ∈ A (resp. A ∈ A′), w′′(A) = w(A) (resp. w′′(A) = w′(A)), and ∀(A,B) ∈ R
(resp. (A,B) ∈ R′), σ′′((A,B)) = σ((A,B)) (resp. σ′′((A,B)) = σ′((A,B))).

1.2 Evaluation of Arguments

Evaluation of argument strength is a key step in any argument based system. Conse-
quently, several methods, called semantics, have been proposed in the literature. In this
section, we recall briefly the existing semantics.

1.2.1 Families of Semantics

In the literature, semantics can be partitioned into three families: Extension-based, Grad-
ual and Ranking-based.
Extension-based semantics have been introduced for the first time by Dung [1995], in is
seminal paper. The idea behind those semantics is to look for sets of acceptable argu-
ments, called extensions. Then, a dialectical status is assigned to every argument.
Gradual semantics have been proposed for the first time by Cayrol and Lagasquie-Schiex
[2005]. They focus on individual arguments, and ascribe to every argument a value taken
from an ordered scale.
The third family of ranking-based semantics, has been proposed by Amgoud and Ben-
Naim [2013]. The idea is to rank-order arguments from the strongest to the weakest.
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1.2.1.1 Extension-based Semantics

Extension-based semantics have been initially defined for flat graphs, then extended to
semi-weighted and then to weighted ones. In what follows, we recall the initial case.
These semantics are based on two key concepts: conflict-freeness and defence.

Definition 7 (Conflict-freeness, Defence). Let AF = 〈A,w ≡ 1,R, σ ≡ 1〉 be a flat

argumentation framework and ε ⊆ A be a set of arguments.

• ε is conflict-free iff @A,B ∈ ε such that (A,B) ∈ R.

• ε defends an argument A iff for all B ∈ A such that (B,A) ∈ R, there exists C ∈
ε such that (C,B) ∈ R.

The following definition recalls the semantics proposed by Dung [1995]. Note that
other semantics refining them have been proposed in the literature. However, we do not
need to recall them since they are not investigated in this thesis.

Definition 8 (Extension-based semantics). Let AF = 〈A,w ≡ 1,R, σ ≡ 1〉 be a flat

argumentation framework and ε ⊆ A is conflict-free.

• ε is an admissible extension iff it defends all its elements.

• ε is a complete extension iff it defends its elements and contains all the arguments

that it defends.

• ε is a grounded extension iff it is the minimal (for set inclusion2) complete exten-

sion.

• ε is a preferred extension iff it is a maximal (for set inclusion) admissible extension.

• ε is a stable extension iff it is a preferred extension that attacks any element in A\
ε.

Let Extx(AF) denote the set of extensions of AF under a given semantics x. Let

Extad(AF), Extco(AF), Extgr(AF), Extpr(AF) and Extst(AF) stand respectively for

the set of admissible, complete, grounded, preferred and stable extensions.

2i.e. an extension included in other extensions, to not be confused with the intersection of arguments
between extensions
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Let us illustrate the different semantics using the following example.

Example 4. Let us consider the flat argumentation graph depicted below.

A B C D E

Figure 1.2: Argumentation graph G2

.

According to each definition, the following extensions are obtained:

• Extad(G2) = {∅, {A}, {C}, {D}, {A,C}, {A,D}},

• Extco(G2) = {{A}, {A,C}, {A,D}},

• Extgr(G2) = {{A}},

• Extpr(G2) = {{A,C}, {A,D}},

• Extst(G2) = { }.

Once the extensions have been computed, we use them to define dialectical status or
acceptability status of each argument. In the literature there are different notions, we recall
below the one from Cayrol and Lagasquie-Schiex [2005].

Definition 9 (Acceptability status). Let AF = 〈A,w ≡ 1,R, σ ≡ 1〉 be a flat argu-

mentation framework and Extx(AF) its set of extensions under the semantics x. Let an

argument A ∈ A:

• A is sceptically accepted iff ∀ ε ∈ Extx(AF), A ∈ ε.

• A is credulously accepted iff ∃ ε, ε’ ∈ Extx(AF) such that A ∈ ε and A /∈ ε’.

• A is rejected iff ∀ ε ∈ Extx(AF), A /∈ ε and ∃ ε′ ∈ Extx(AF) such that ε′

attacks A.

• A is undecided iff ∀ ε ∈ Extx(AF), A /∈ ε and @ ε′ ∈ Extx(AF) such that ε′

attacks A.

Example 4 (Cont.) According to each semantics, the following results are obtained:

• Under admissible semantics, the arguments A,C,D are credulously accepted, B is

rejected and E is undecided.
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• Under the complete and prefered semantics,A is sceptically accepted, C andD are

credulously accepted, B is rejected and E is undecided.

• Under the grounded semantics,A is sceptically accepted,B is rejected andC,D,E

are undecided.

• Under the stable semantics, the five arguments A,B,C,D,E are undecided.

1.2.1.2 Gradual Semantics

Introduced for the first time by Cayrol and Lagasquie-Schiex [2005], gradual semantics
provide finer-grained evaluations of arguments. They are more discriminating between
arguments than extension-based semantics. Furthermore, they focus directly on individual
arguments, and assign to each of them a value taken from an ordered scale. For the sake
of illustration, in what follows we consider the scale [0,1].

Definition 10 (Gradual semantics). A gradual semantics is a function S transforming any

weighted argumentation framework AF〈A,w,R, σ〉 into a weighting StrS
AF on A. For

A ∈ A, StrS
AF(A) denotes the strength of A.

The first gradual semantics that has been defined in the literature is h-Categoriser
(Besnard and Hunter [2001]). It was proposed for evaluating the degree of interaction
between logical arguments in an acyclic graph. It was then used by Pu et al. [2014], as a
semantics that evaluates argument strength in flat argumentation graphs that may contain
cycles.

Definition 11 (h-Categoriser). h-Categoriser is a function Sh transforming any flat ar-

gumentation graph AF = 〈A,w ≡ 1,R, σ ≡ 1〉 into a weighting StrSh
AF such that for

every A ∈ A,

StrSh
AF(A) = 1

1 + ∑
B∈Att(A)

StrSh
AF(B)

When Att(A) = ∅, ∑
B∈Att(A)

StrSh
AF(B) = 0.

Let us illustrate this semantics using Example 4.

Example 4 (Cont.) Consider the flat argumentation graph G2. It can be checked that:

StrSh
G2(A) = 1 StrSh

G2(B) = 0.403 StrSh
G2(C) = 0.481

StrSh
G2(D) = 0.675 StrSh

G2(E) = 0.618
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This semantics has been extended by Amgoud et al. [2017] for dealing with weights
on arguments, and by Amgoud and Doder [2019] for dealing with weights on arguments
and weights on attack relations.

Definition 12 (Weighted h-Categoriser). Weighted h-Categoriser is a function Swh trans-

forming any weighted argumentation graph AF = 〈A,w,R, σ〉 into a weighting StrSwh
AF

on A such that for every A ∈ A,

StrSwh
AF(A) =


w(A) iff Att(A) = ∅

w(A)
1+

∑
B∈Att(A)

StrSwh
AF(B)×σ(B,A)

else

To illustrate this definition, we use Example 3 with G1.

Example 3 (Cont.) Consider the weighted graph G1 and assume that σ ≡ 1, i.e., every

attack has weight 1. Recall that:

w(A) = 0.7, w(B1) = 0.3, w(B2) = 0.3, w(B3) = 0.4, w(B4) = 0.5

It can be checked that:

StrSwh
G1 (A) = 0.28 StrSwh

G1 (B1) = 0.3 StrSwh
G1 (B2) = 0.3

StrSwh
G1 (B3) = 0.4 StrSwh

G1 (B4) = 0.5

Note that every Bi keeps its initial weight since it is not attacked. Furthermore, it has

a negative impact on A.

Now, consider the weight on the attacks, which are recalled below:

σ(B1, A) = 0.6, σ(B2, A) = 0.6, σ(B3, A) = 0.6, σ(B4, A) = 0.9

Hence:

StrSwh
G1 (A) = 0.34 StrSwh

G1 (B1) = 0.3 StrSwh
G1 (B2) = 0.3

StrSwh
G1 (B3) = 0.4 StrSwh

G1 (B4) = 0.5

Obviously, the decrease in the weight of the attacks, increases the strength of A.

There are different other gradual semantics in the literature, some of them like Trust-
based semantics (TB) from da Costa Pereira et al. [2011] considers only one attacker
when evaluating the strength of an argument.
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Definition 13 (Trust-based semantics). Trust-based semantics is a function TB transform-

ing any semi-weighted argumentation graph AF = 〈A,w,R, σ ≡ 1〉, into a weighting

StrTB
AF on A such that

StrTB
AF(A) = lim

n→+∞
αn(A)

where α0(A) = w(A) and αn+1(A) = 1
2αn(A) + 1

2min{w(A), 1− max
(B,A)∈R

αn(B)}.

The Trust-based semantics is guided by two principles. First, the strength α(A) of an
argument A must not be greater than the strength to which the arguments attacking it are
unacceptable. Second, its strength cannot be greater than its basic weight.

Example 3 (Cont.) Consider the weighted graph G1 and assume that σ ≡ 1, i.e., every

attack has weight 1.

StrTB
G1(A) = 0.5 StrTB

G1(B1) = 0.3 StrTB
G1(B2) = 0.3

StrTB
G1(B3) = 0.4 StrTB

G1(B4) = 0.5

1.2.1.3 Ranking Semantics

The third family of semantics is the so-called ranking semantics which have been pro-
posed by Amgoud and Ben-Naim [2013]. Unlike the two other families that compute nu-
merical/qualitative strengths, these focus rather on ranking arguments w.r.t. their strengths
from the strongest to the weakest. These semantics are useful in applications like decision
making where a comparison of arguments is crucial.

Definition 14 (Ranking). A ranking on a set X is a binary relation � on X such that: �
is total (i.e., ∀A,B ∈ Arg(L),A � B or B � A) and transitive (i.e., ∀A,B,C ∈ Arg(L),

if A � B and B � C, then A � C). Intuitively, A � B means that B is at least as

acceptable as A. We will note A ≺ B when B 6� A which means that B is strictly more

acceptable than A and A ' B when A � B and B � A which means that A and B are

equally acceptable.

Definition 15 (Ranking semantics). A ranking semantics is a function S transforming any

weighted argumentation graph AF = 〈A,w,R, σ〉 into a ranking �S on A.

Obviously every gradual semantics gives birth to a ranking one. However, the converse is
not true as we can see into Burden-based semantics. Before defining this semantics let us
first recall some useful notions, namely lexicographical order.

Definition 16 (Lexicographical order). A lexicographical order between two vectors of

real numbers V = 〈V1, · · · , Vn〉 and V ′ = 〈V ′1 , · · · , V ′n〉 is defined as V ′ �lex V iff
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∀j ∈ {1, · · · , n}, V ′j ≤ Vj . V 'lex V ′ means that V �lex V ′ and V ′ �lex V ; and

V ′ ≺lex V means that V ′ �lex V and V 6�lex V ′.

Example 4 (Cont.) Recall that under h-Categoriser semantics, the argument of the graph

G2 set the following values:

StrSh
G2(A) = 1 StrSh

G2(B) = 0.403 StrSh
G2(C) = 0.481

StrSh
G2(D) = 0.675 StrSh

G2(E) = 0.618

Thus, the arguments are ranked as follows:

B ≺Sh
lex C ≺Sh

lex E ≺Sh
lex D ≺Sh

lex A

Example 3 (Cont.) Recall that under Weighted h-Categoriser, the arguments of the graph

G1 set the following values:

StrSwh
G1 (A) = 0.28 StrSwh

G1 (B1) = 0.3 StrSwh
G1 (B2) = 0.3

StrSwh
G1 (B3) = 0.4 StrSwh

G1 (B4) = 0.5

Hence:

A ≺Swh
lex B1 'Swh

lex B2 ≺Swh
lex B3 ≺Swh

lex B4

In the literature, there exist "pure" ranking semantics, i.e., semantics that are not based
on gradual semantics. An example is Burden-based semantics defined by Amgoud and
Ben-Naim [2013] for flat graphs. To define this semantics, let us first introduce the notion
of burden number.

Definition 17 (Burden number). Let AF = 〈A,w ≡ 1,R, σ ≡ 1〉 be a flat argumentation

framework, i ∈ {0, 1, · · · }, and A ∈ A. We denote by Buri(A) the burden number of A in

the ith step, i.e.:

Buri(A) =


1 if i = 0;
1 + ∑

B∈Att(A)

1
Buri−1(B) otherwise.

By convention, if Att(A) = ∅, then
∑

B∈Att(A)

1
Buri−1(B) = 0.

To illustrate this definition, let us consider the graph G2 from Example 4.

Example 4 (Cont.) The burden numbers of each argument are summarised in the table
below. Note that these numbers will not change beyond step 7 (approximating the result
to 10−2).
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Step i A B C D E
0 1 1 1 1 1
1 1 3 3 2 2
2 1 2.33 1.83 1.33 1.5
3 1 2.55 2.18 1.55 1.67
4 1 2.46 2.04 1.46 1.60
5 1 2.49 2.09 1.49 1.63
6 1 2.48 2.07 1.48 1.62
7 1 2.48 2.08 1.48 1.62
8 1 2.48 2.08 1.48 1.62

Table 1.1: Burden numbers on G2

The Burden-based semantics (Bbs) compares lexicographically two arguments on the
basis of their burden numbers.

Definition 18 (Burden-based semantics). Bbs transforms any flat argumentation frame-

work AF = 〈A,w ≡ 1,R, σ ≡ 1〉 into the ranking Bbs(AF) onA such that ∀A,B ∈ A,

〈A,B〉 ∈ Bbs(AF) iff one of the two following cases holds:

• ∀i ∈ {0, 1, · · · }, Buri(A) = Buri(B);

• ∃i ∈ {0, 1, · · · }, Buri(A) < Buri(B) and ∀j ∈ {0, 1, · · · , i − 1}, Burj(A) =
Burj(B).

Note that the lexicographical order used in Bbs is reversed with respect to definition
16, i.e. Bbs prefers an argument when the value is smaller.

Example 4 (Cont.) From the previous table we obtain that:

B ≺Bbs
lex C ≺Bbs

lex E ≺Bbs
lex D ≺Bbs

lex A

The three families of existing semantics in the literature have been briefly recalled
here. In the rest of the thesis, the focus will be put on the family of gradual semantics.

1.2.2 Principle-based Approach for Semantics

A great number of semantics have been proposed in the literature. Consequently, their
comparison became crucial for clarifying their similarities and differences, and also for
understanding their foundations. For that purpose, several works have been devoted to the
development of principles that semantics may follow. The first work has been done by
Baroni and Giacomin [2007], where a list of principles has been proposed for extension-
based semantics. The list has further been slightly extended in van der Torre and Vesic
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[2017] and has been used for comparing all the existing extension semantics.
In Amgoud and Ben-Naim [2016], other principles have been proposed for gradual se-
mantics, and more generally for any semantics that assigns numerical or qualitative strength
to arguments. The initial work focused on flat argumentation graphs, then extended in
Amgoud et al. [2017] to deal with semi-weighted graphs, and in Amgoud and Doder
[2019] for handling weighted argumentation graphs. In what follows, we recall the latter
as it is more general than the two previous ones.

The first principle ensures that the strength of an argument does not depend on its
identity.

Principle 1 (Anonymity). A semantics S satisfies Anonymity iff, for any two weighted

argumentation graphs AF = 〈A,w,R, σ〉 and AF′ = 〈A′,w′,R′, σ′〉, for any iso-

morphism f from AF to AF′, the following property holds: ∀A ∈ A, StrS
AF(A) =

StrS
AF′(f(A)).

The second principle, called Independence, states that the strength of an argument A
should be independent of any argument that is not connected to A (i.e., there is no path
from that argument to A, ignoring the direction of the edges).

Principle 2 (Independence). A semantics S satisfies Independence iff, for any two weighted

argumentation graphs AF = 〈A,w,R, σ〉 and AF′ = 〈A′,w′,R′, σ′〉 such that A ∩
A′ = ∅, the following property holds: ∀A ∈ A, StrS

AF(A) = StrS
AF⊕AF′(A).

The next principle, called Directionality, states that the strength of an argument should
not depend on the arguments it itself attacks.

Principle 3 (Directionality). A semantics S satisfies Directionality iff, for any two weighted

argumentation graphs AF = 〈A,w,R, σ〉 such thatA,B ∈ A and AF′ = 〈A′,w′,R′, σ′〉
such thatA = A′, w = w′,R′ = R∪{(A,B)} and ∀(x, y) ∈ R, σ((x, y)) = σ′((x, y)),

the following holds: ∀x ∈ A, if there is no path fromB to x, then StrS
AF(x) = StrS

AF′(x).

The next principle called Equivalence states that the strength of an argument depends
only on its initial weight, the strength of its attackers and the weight of its direct attacks.

Principle 4 (Equivalence). A semantics S satisfies Equivalence iff, for any weighted ar-

gumentation graph AF = 〈A,w,R, σ〉, for all A,B ∈ A, if

• w(A) = w(B),

• there exists a bijective function f from Att(A) to Att(B) s.t. ∀x ∈ Att(A):

– StrS(x) = StrS(f(x)),
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– σ((x,A)) = σ((f(x), B)),

then StrS(A) = StrS(B).

The next principle, called Maximality, states that the strength of an argument is equal
to its initial weight if it is not attacked.

Principle 5 (Maximality). A semantics S satisfies Maximality iff, for any weighted argu-

mentation graph AF = 〈A,w,R, σ〉, for any A ∈ A, if Att(A) = ∅, then StrS(A) =
w(A).

The next principle, called Neutrality, says that the strength of an argument does not
take into account any attacker whose strength is equal to 0 and any attack whose weight
is 0.

Principle 6 (Neutrality). A semantics S satisfies Neutrality iff, for any weighted argumen-

tation graph AF = 〈A,w,R, σ〉, for all A,B ∈ A, if

• w(A) = w(B),

• Att(B) = Att(A)∪{x} such that x ∈ A\Att(A) and (StrS(x) = 0 or σ(x,B) =
0),

then StrS(A) = StrS(B).

The next principle, called Weakening, states that an argument loses weight if it has at
least one serious attack from a serious attacker.

Principle 7 (Weakening). A semantics S satisfies Weakening iff, for any weighted argu-

mentation graph AF = 〈A,w,R, σ〉, for any A ∈ A, if

• w(A) > 0 and

• ∃B ∈ Att(A) such that w(B) > 0 and σ((B,A)) > 0,

then StrS(A) < w(A).

The following principle, called Resilience, states that an attack cannot kill an ar-
gument.This principle is satisfied by most gradual semantics while it is violated by all
extension-based semantics.

Principle 8 (Resilience). A semantics S satisfies resilience iff, for any weighted argumen-

tation graph AF = 〈A,w,R, σ〉, for any A ∈ A, if w(A) > 0 then StrS(A) > 0.

The next principle, called Proportionality, ensures that the evaluation of an argument
is sensitive to the basic weight of the argument.
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Principle 9 (Proportionality). A semantics S satisfies Proportionality iff, for any weighted

argumentation graph AF = 〈A,w,R, σ〉, for all A,B ∈ A, if

• Att(A) = Att(B),

• ∀x ∈ Att(A), σ((x,A)) = σ((x,B)),

• w(A) > w(B),

• StrS(A) > 0,

then StrS(A) > StrS(B).

The next principle, called Reinforcement, ensures that the evaluation of an argument
is sensitive to the strength of its attackers.

Principle 10 (Reinforcement). A semantics S satisfies Reinforcement iff, for any weighted

argumentation graph AF = 〈A,w,R, σ〉, for all A,B ∈ A, if

• w(A) = w(B),

• StrS(A) > 0,

• Att(A) \ Att(B) = {x}, Att(B) \ Att(A) = {y},

• StrS(y) > StrS(x),

• σ((x,A)) = σ((y,B)),

then StrS(A) > StrS(B).

The following principle, called Monotony, ensures that an argument cannot become
stronger when its set of attackers gets bigger.

Principle 11 (Monotony). A semantics S satisfies Monotony iff, for any weighted argu-

mentation graph AF = 〈A,w,R, σ〉, for all A,B ∈ A, if

• w(A) = w(B),

• Att(B) = Att(A) ∪ {x}, with σ((x,B)) > 0 and StrS(x) > 0,

• StrS(A) > 0,

then StrS(A) > StrS(B).

The next principle, named Attack-Sensitivity, states that the stronger the weight of an
attack, the greater its impact on the targeted argument.
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Principle 12 (Attack-Sensitivity). A semantics S satisfies Attack-Sensitivity iff, for any

weighted argumentation graph AF = 〈A,w,R, σ〉, for all A,B ∈ A, if

• w(A) = w(B),

• Att(A) \ Att(B) = {x}, Att(B) \ Att(A) = {y},

• StrS(x) = StrS(y),

• σ((y,B)) > σ((x,A)),

• StrS(A) > 0,

then StrS(A) > StrS(B).

It has been shown in Amgoud and Doder [2019] that the 12 principles are compatible
together, i.e., there exists at least one semantics that satisfies all of them together.

Theorem 1. The twelve principles are compatible.

It is worth mentioning that Weighted h-Categoriser (Def. 12) satisfies all the twelve
principles and for extension-based semantics, it is possible to study these principles on
them, as defined in Amgoud and Ben-Naim [2016]. From the acceptability status of an
argument a strength may be assigned.

Definition 19 (Acceptability strength). Let AF = 〈A,w ≡ 1,R, σ ≡ 1〉 be a flat ar-

gumentation graph and x ∈ {ad, co, gr, pr, st} be an extension-based semantics among

admissible, complete, grounded, preferred and stable. Let A ∈ A:

• if A is sceptically accepted then StrxAF(A) = 1.

• if A is credulously accepted then StrxAF(A) = 0.5.

• if A is undefined then StrxAF(A) = 0.3.

• if A is rejected then StrxAF(A) = 0.

The table below summarises how the extension-based semantics behave with respect
to the twelve principles in case of flat argumentation framework (i.e. 〈A,w ≡ 1,R, σ ≡
1〉). Note that Resilience is violated by the four extension-based semantics, Equivalence is
satisfied only by Grounded and Proportionality and Attack-Sensitivity are not applicable
on flat graphs.
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Grounded Stable Preferred Complete
Anonymity • • • •

Independence • ◦ • •
Directionality • ◦ • •
Equivalence • ◦ ◦ ◦
Maximality • ◦ • •
Neutrality • • ◦ ◦
Weakening • • • •
Resilience ◦ ◦ ◦ ◦

Reinforcement • • ◦ ◦
Monotony • • • •

Proportionality − − − −
Attack-Sensitivity − − − −

The symbol • (resp.◦) means the principle is satisfied (resp. violated) by the semantics
whereas − means that the principle may not be applied to the semantics.

Table 1.2: Satisfaction of the principles of extension-based semantics

1.2.3 Evaluation Methods

The idea is to define a gradual semantics by an evaluation method, which is a tuple of
aggregation functions. Each of them must satisfy certain properties. Such approach has at
least four advantages:

1. Firstly, it makes transparent the different operations performed by a semantics (e.g. ,
accruing strengths of attackers, adjusting weights, etc.) and formalizes them through
aggregation functions.

2. Secondly, it indicates the main parameters to be tuned to define the different seman-
tics.

3. Third, it facilitates the study of combinations of functions that lead to reasonable
semantics.

4. Fourth, it has recently been shown in Amgoud and Doder [2018] that the properties
of aggregation functions are closely related to the principles recalled in the previous
section.

In what follows, we present a simplified version of this general framework, where
we consider the unit interval [0,1] for all functions (the following definition comes from
Amgoud and Doder [2019]).

Definition 20 (EM). An evaluation method (EM) is a tuple M = 〈f ,g,h〉 such that:
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• h : [0, 1]× [0, 1]→ [0, 1],

• g : ⋃+∞
k=0[0, 1]k → [0,+∞[, such that g is symmetric,

• f : [0, 1]× Range(g) 3 → [0, 1].

The function h calculates the strength of an attack by aggregating the weight of the attack
(given by σ) with the strength of the attacker (given by Str).
The function g evaluates the combined strength of the attacks of an argument. To do this, g
aggregates the strength of all attacks (obtained by h) received by the argument. Since the
ordering of attackers should not be important, the function should respect the condition
of symmetry, i.e.

g(x1, · · · , xn) = g(xρ(1), · · · , xρ(n)),

for any permutation ρ of the set {1, · · · , n}.
The function f returns the strength of an argument by combining its initial weight (given
by w) with the value returned by g.
The following table shows some possibilities for functions f , g and h, including well-
known T-norms (Klement et al. [2000]) for h and aggregation functions for g. It can be
noted that most of them are already (implicitly) used in literature.

fcomp(x1, x2) = x1(1− x2) gsum(x1, · · · , xn) =
n∑
i=1

xi

fexp(x1, x2) = x1e
−x2 gsum,α(x1, · · · , xn) = (

n∑
i=1

(xi)α) 1
α

ffrac(x1, x2) = x1
1+x2

gmax(x1, · · · , xn) = max{x1, · · · , xn}
fmin(x1, x2) = min{x1, 1− x2} gpsum(x1, · · · , xn) = x1 	 · · · 	 xn,

where x1 	 x2 = x1 + x2 − x1x2

hprod(x1, x2) = x1x2
hprod,α(x1, x2) = xα1x2, α > 0
hmin(x1, x2) = min{x1, x2}

hHam(x1, x2) = x1x2
x1+x2−x1x2

, where hHam(x1, x2) = 0 if x1 = x2 = 0

Table 1.3: Examples of functions f , g and h

Let us define a gradual semantics based on an evaluation method.

Definition 21 (Gradual Semantics based on an EM). A gradual semantics S based on an

evaluation method M = 〈f ,g,h〉 is a function assigning to every AF = 〈A,w,R, σ〉, a

weighting StrS such that for every A ∈ A, StrS(A) =

f

w(A),g
(

h
(
σ(B1, A), StrS(B1)

)
, · · · ,h

(
σ(Bk, A), StrS(Bk)

)),
3Range(g) denotes the co-domain of g
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where {B1, · · · , Bk} = Att(A).

To illustrate the definition, let us use the Trust-Based semantics (Def. 13) on a simple
example.

Example 5. Consider the graph G3 depicted below and whose weights of arguments and

attacks are all equal to 1.

A B

Figure 1.3: Argumentation graph G3

It is easy to check that StrTBG3 (A) = StrTBG3 (B) = 1
2 .

It was shown in (da Costa Pereira et al. [2011]), that TB leads to the following equa-
tion:

α(A) = min{w(A), 1− max
(B,A)∈R

α(B)}

Hence, StrTB is an instance of α. The above equation can be decomposed into an
evaluation method, called TB evaluation method: MTB = 〈fmin,gmax,hprod〉. So, the TB
semantics is based on the evaluation method MTB. Note that Trust-Based semantics is
defined on semi-weighted graphs, i.e. AF = 〈A,w,R, σ ≡ 1〉 and we took for example
hprod in MTB but to be more general, the semantics TB is based on any evaluation method
Mβ

TB = 〈fmin,gmax,hβ〉 such as for any x ∈ [0, 1], hβ(1, x) = x.

Definition 21 shows that evaluating arguments with a semantics amounts to solving a
system of equations (one equation per argument). Indeed, the solutions v(A) = StrS(A)
of the system of equations

v(A) = f(w(A),g(h(σ((B1, A)), v(B1)), · · · ,h(σ((Bn, A)), v(Bn)))) (1.1)

for each argument A ∈ A with {B1, · · · , Bn} = Att(A), correspond to a semantics S
based on an evaluation method M noted StrS.

The following result shown in (Amgoud and Doder [2019]) ensures that the above
system has at least one solution when the functions of the evaluation method are continu-
ous.

Theorem 2. If M = 〈f ,g,h〉 is an evaluation method such that g is continuous, and f
and h are continuous on the second variable, then there exists a semantics based on M.
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The system of equations 1.1 may thus have one or several solutions. Consider the case
of the TB evaluation method MTB.

Example 5 (Cont.) Let MTB = 〈fmin,gmax,hprod〉 and recall that StrTBG (A) = StrTBG (B)
= 1

2 . This is a solution of the system of equations 1.2 below.

v(A) = 1− v(B), v(B) = 1− v(A) (1.2)

However, this system has infinitely many solutions including (v(A), v(B)) = (0, 1).
Then, the semantics S′ defined by:

• StrS′
G3(A) = 0,

• StrS′
G3(B) = 1,

• StrS′
G′3
≡ StrTBG′3

for all G′3 6= G3,

is also based on MTB. This means that MTB does not characterize Trust-based semantics.
However, a gradual semantics should be based on an evaluation method which character-
izes it.

For that purpose, in (Amgoud and Doder [2019]), the authors extend the existing gen-
eral setting by integrating a characterization condition. They introduce the concept of
determinative evaluation methods, i.e., methods that characterize semantics.

Definition 22 (Determinative EM). An evaluation method M = 〈f ,g,h〉 is determinative

iff there is a unique semantics S which is based on M. We denote by S(M) the semantics

characterized by a determinative evaluation method M.

As we have shown in example 5, the TB evaluation method is not determinative for
all graphs. However, MTB, like any other evaluation method, is determinative on acyclic
graphs, i.e. it produces unique semantics for these graphs.

What we would like, is to have evaluation methods that produce a single result (i.e.
determinative) and also using functions with desirable properties. To this point, no con-
straints are imposed on the functions of an evaluation method, except the symmetry on
g. In the following definition, the authors in Amgoud and Doder [2019] have introduced
the notion of well-behaved evaluation methods, i.e. using functions satisfying proper-
ties that control their behaviour. They consider a subset of the properties of (Cayrol and
Lagasquie-Schiex [2005]; Egilmez et al. [2013]), thus broadening the framework.

Definition 23 (Well-Behaved EM). An evaluation method M = 〈f ,g,h〉 is well-behaved

iff the following holds:
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1. (a) f is increasing in the first variable, decreasing in the second variable when-

ever the first variable is not equal to 0,

(b) f(x, 0) = x,

(c) f(0, x) = 0.

2. (a) g() = 0,

(b) g(x) = x,

(c) g(x1, · · · , xn) = g(x1, · · · , xn, 0),

(d) g(x1, · · · , xn, y) ≤ g(x1, · · · , xn, z) if y ≤ z,

(e) g is symmetric.

3. (a) h(0, x) = 0,

(b) h(1, x) = x,

(c) h(x, y) > 0 whenever xy > 0,

(d) h is non-decreasing in both components.

Now, let us see how the authors have defined a determinative family of well behaved
evaluation methods.

Definition 24 (A determinative family of EM). Let M∗ be the set of all well-behaved

evaluation methods M = 〈f ,g,h〉 such that:

• lim
x2→x0

f(x1, x2) = f(x1, x0), ∀x0 6= 0.

• lim
x→x0

g(x1, · · · , xk, x) = g(x1, · · · , xk, x0), ∀x0 6= 0.

• h is continuous on the second variable.

• λf(x1, λx2) < f(x1, x2), ∀λ ∈ [0, 1[, x1 6= 0.

• g(h(y1, λx1), · · · ,h(yk, λxk)) ≥ λg(h(y1, x1), · · · ,h(yk, xk)), ∀λ ∈ [0, 1].

Let us have a closer look at some of these constraints. For the first two conditions
(from the top) of M∗, they relax the continuity conditions of Theorem 2 by excluding
the value 0; they are weakened in order to capture semantics sensitive to the number of
attackers (such as the Weighted Card-based (Amgoud et al. [2017])), where even a weak
attacker can have a significant impact. The last two conditions in M∗ are specific con-
traction conditions. The fifth condition is satisfied by most combinations of aggregation
functions (for g) and T-norms (for h).

Theorem 3. Any evaluation M ∈M∗ is determinative.
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Definition 25 (Family of S∗ semantics). Let S∗ be the set of all semantics which are based

on an evaluation method in M∗, i.e.,

S∗ = {S(M) |M ∈M∗}.

It has been shown (in Amgoud and Doder [2019]) that the semantics of S* satisfy nine
principles defined in section 1.1.

Theorem 4. For any gradual semantics S ∈ S∗ , S satisfies Anonymity, Independence,

Directionality, Equivalence, Maximality, Neutrality, Weakening, Proportionality, and Re-

silience.

Now, if we want the semantics defined by an evaluation method belonging to M∗

to satisfy the twelve principles of section 1.2.2, then we should add two additional con-
straints, one on g and one on h as follows:

Definition 26 (M∗
e). Let M∗

e (e stands for extended) as the set of all evaluation methods

M = 〈f ,g,h〉 such that:

• M ∈M∗,

• g(x1, · · · , xk, y) > g(x1, · · · , xk, z) whenever y > z,

• h(x1, y) > h(x2, y) whenever x1 > x2, y 6= 0.

This gives us a new family of semantics.

Definition 27 (Family of M∗
e semantics). Let S∗e the set of all semantics which are based

on an evaluation method in M∗
e, i.e.,

S∗e = {S(M) |M ∈M∗
e}.

The semantics of S∗e satisfy all the principles seen previously.

Theorem 5. For any gradual semantics S ∈ S∗, S satisfies all the twelve principles.

To illustrate these definitions and results, let us consider again the gradual semantics
Weighted h-Categoriser which belongs to S∗ (Amgoud and Doder [2019]). It has been
shown that it is based on the evaluation method Mwh = 〈ffrac,gsum,hprod〉 (see table 1.3
for the definition of the functions).

In the source paper, the authors proposed an algorithm that computes the strength of
an argument under any semantics of the set S∗. The idea is that at each step, a value is
assigned to each argument. In the initial step, the value of an argument is its basic weight.
Then, at each step, the value is recalculated on the basis of the weights of the arguments
and attacks as well as the values of the attackers of the argument in the previous step.



1.3. SIMILARITY 27

Theorem 6. Let M = 〈f ,g,h〉 ∈ M∗, S = S(M), and AF = 〈A,w,R, σ〉. For every

A ∈ A, we define the sequence {s(A)(n)}+∞
n=1 in the following way:

• s(A)(1) = w(A),

• s(A)(n+1) = f

w(A),g
(

h
(
σ(B1, A), s(B1)(n)

)
, · · · ,h

(
σ(Bk, A), s(Bk)(n)

)),

where {B1, · · · , Bk} = Att(A).

Then, for every A ∈ A:

1. {s(A)(n)}+∞
n=1 converges, and

2. lim
n→+∞

s(A)(n) = StrS
AF(A).

1.3 Similarity

This section introduces the challenges of this thesis. Then it gives an overview of the
state of the art on the notion of similarity in artificial intelligence and more specifically in
argumentation.

1.3.1 Motivation

Let us consider again the debate on how to reduce the debts of a country (graph G1 of
Example 3). The following five arguments have been exchanged.

A: Increasing taxes, decreasing financial market borrowing and allowing govern-
ment to finance itself through money creation, reduce the country’s debt.

B1: For a better living standards for all, taxes must not be increased.

B2: To improve the quality of life, taxes must not be increased.

B3: For a better healthcare and social justice, taxes must not be increased.

B4: The purpose of borrowing is to prevent the inflation caused by money creation,
therefore decreasing financial market borrowing and allowing government to fin-
ance itself through money creation do not imply a reduction of the debt.

Recall also that B1, B2, B3, B4 attack A. When w(A) = 0.7, w(B1) = 0.3, w(B2) =
0.3, w(B3) = 0.4 and w(B4) = 0.5, and σ ≡ 1, we have seen that under Weighted h-
Categoriser semantics, ∀i ∈ {1, 2, 3, 4}, Str(Bi) = w(Bi) while Str(A) = 0.28, loosing
thus weight.
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We have seen that Weighted h-Categoriser semantics satisfies the Monotony princi-
ple, i.e. when an argument receives an additional (non-null) attack the strength of that
argument must decrease. However, this should only hold if the new attacker brings new
information (compared to the other attackers of the argument). Let us consider four new
graphs G11, G12, G13 and G14 where we rename the argumentA intoAi whenAi belongs
to G1i.

B1 B2 B3

A1

(G11)

B1 B3

A2

(G12)

B2 B3

A3

(G13)

B1 B4

A4

(G14)

Figure 1.4: Argumentation graphs G11, G12, G13 and G14

According to Monotony, the strength of A1 should be weaker than the strength of A2

due to the additional attack from B2. However the two arguments B1 and B2, are identi-
cal or totally similar since they support the same claim with the same evidence. One of
them is thus redundant, and considering both in the evaluation of A1 is questionable. A
reasonable semantics would declare A1, A2 and A3 as equally strong.
Consider nowB1 andB3. They are partially similar since each of them brings a new piece
of evidence (eg., entertainment for B1, and social justice for B3) in addition to the com-
mon one (better healthcare which is part of better living standards). Finally, B4 is based
on a completely different evidence, making it dissimilar to the three others. Hence, one
would expect to declare A2 (resp. A1, A3) as stronger than A4 since the group {B1, B3}
of A2’s attackers is weaker than the group {B1, B4} of A4’s ones. Indeed, the former con-
tains some redundancy which should be removed, while the latter does not (B1 and B4

being different).
To sum up, ignoring (total or partial) similarities would lead to inaccurate evaluations

of arguments, and thus to wrong recommendations by argumentation systems. Therefore,
an argumentation framework should be equipped with a similarity measure that assesses
similarity between arguments, and semantics should be able to take it into account.

1.3.2 Existing Works

1.3.2.1 Similarity Measures in Artificial Intelligence

The notion of similarity measure is widely studied in the domain of computer science
(information retrieval, classification, image processing, etc.) and particularly in artificial
intelligence. It is worth mentioning that the field of machine learning frequently uses a
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similarity measure to compare objects between them. For instance, in clustering tasks
(i.e. grouping data from an unstructured set), similarity values directly influence the re-
sulting data subgroups (e.g. Irani et al. [2016] is a survey presenting different clustering
categories with their most frequently employed similarity measure).

We may distinguish two main families of similarity measures (across all domains) that
are characterised by the nature of objects to compare. There are those that use symbolic
information (e.g. natural or logical language) and those that work with numerical data
(e.g. pixel values or coordinates). Note that, symbolic information may be transformed
into a numerical form to compute a degree of similarity. For example, for a given object
containing a set of features, a binary vector may be produced, with 0 meaning that the
object does not have that feature and 1 meaning that it does. If the objects are texts, for
instance, common elements and differences may be counted. For a study of similarity
measures on binary and numerical data see Lesot et al. [2009b]; Choi et al. [2010], and
for a study of similarity measures applied to texts see Gomaa et al. [2013]; Vijaymeena
and Kavitha [2016].

Below we recall some measures that have been used in this thesis. They compare
arbitrary pairs of non-empty objects (X and Y ). Let a = |X ∩ Y |, b = |X − Y |, and
c = |Y −X|where |·| denotes the cardinality of a set. Table 1.4 recalls the most prominent
measures, namely the Jaccard measure (Jaccard [1901]), Dice measure (Dice [1945]),
Sorensen one (Sørensen [1948]), and those proposed in (Anderberg [1973]; Sneath et al.

[1973]; Ochiai [1957]; Kulczynski [1927]).

Jaccard Jaccard [1901] sjac(X, Y ) = a
a+b+c

Dice Dice [1945] sdic(X, Y ) = 2a
2a+b+c

Sorensen Sørensen [1948] ssor(X, Y ) = 4a
4a+b+c

Symmetric Anderberg Anderberg [1973] sand(X, Y ) = 8a
8a+b+c

Sokal and Sneath 2 Sneath et al. [1973] sss2(X, Y ) = a
a+2(b+c)

Ochiai Ochiai [1957] soch(X, Y ) = a√
a+b
√
a+c

Kulczynski 2 Kulczynski [1927] sku2(X, Y ) = 1
2

(
a
a+b + a

a+c

)
Table 1.4: Similarity measures for sets of objects

Regarding similarity measures on natural language data, it is interesting to briefly
present the field of argument mining and then to mention some research related to our
purpose. It aims to automatically extracting structured arguments from unstructured tex-
tual documents. This is a topical issue, especially because of its potential to process in-
formation from the web, particularly from social media. Moreover, thanks to the progress
made in machine learning methods, more and more promising applications in the fields of
social and economic sciences, policy development and information technology are con-
sidered (Lippi and Torroni [2016]). More importantly for our work, it will be possible to
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automate the generation of argument graphs, which is necessary to automate the whole
argumentation process. Note that similarity between pairs of arguments has been studied
in the context of argument mining (Misra et al. [2016]; Stein [2016]; Konat et al. [2016]).
The aim is to detect paraphrases, i.e. redundant textual arguments.

1.3.2.2 Similarity in Argumentation

In the argumentation literature, similarity has been studied within an argument (Wal-
ton et al. [2008]; Walton [2010, 2013]). Walton has discussed different argumentation
schemes such as analogical arguments or similarity arguments. These arguments have
premises comparing different objects to conclude their claim. Regarding the use of sim-
ilarity in logical argumentation, in Wooldridge et al. [2006] and Amgoud et al. [2014])
the authors studied equivalence, i.e., complete similarity, between logical arguments. We
will see that our approach generalizes these proposals. Indeed, it assigns the maximum
value to each pair of equivalent arguments. Finally, Budàn et al. [2015] have defined a
general measure evaluating the similarity between pairs of analogical arguments. It is
based on an assumed mapping function applied between the features of a pair of ar-
guments. Then in Budan et al. [2020], the authors have proposed a definition of simi-
larity measure in the framework of bipolar argumentation (with attacks and supports).
Unlike our work where we will use a logical language to represent the information in
an argument, they consider abstract arguments extended by a set of descriptors defined
in pairs (domain, value); for example, a descriptor on the domain of "activity" may
be: (general_activity, {walk, watch_movie, go_out}). They also offer the possibility
of evaluating similarity in different contexts, i.e., with different degrees of importance
between the domains of different descriptors.
Besides the fact that they use a bipolar graph of enriched arguments, another difference is
that they use extension-based semantics (while we use gradual semantics). Furthermore,
similarity is not used for eliminating redundant attackers but rather to validate attack and
support relations. This idea may be compared within a weighted argumentation frame-
work using similarity as a relevance weight on relations. In this view, if two arguments
connected by a relation are similar then the relation is validated in the opposite case the
relation is ignored. On the other hand, it would seem interesting to check definition 13 of
Budan et al. [2020] (degree of similarity between arguments) with respect to definition
12 (similarity coefficient of a descriptor). Indeed, it is written that the similarity between
arguments is between 0 and 1. However, as it is defined, it is possible to obtain results
strictly higher than 1. In definition 12, the similarity of a descriptor may be strictly higher
than 1 and in definition 13, if we take for example the maximum t-conorme, it is possible
to obtain a similarity between arguments strictly higher than 1.
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The last work that tackled similarity in argumentation has been done in Amgoud et al.

[2018]. The authors have considered semi-weighted argumentation frameworks, and have
used two families of similarity measures between abstract arguments, an n-ary family be-
tween an argument and a set of arguments and, as in our case, a binary family between a
pair of arguments. Finally, they have proposed necessary principles for gradual semantics
considering similarity, as well as new semantics using these different similarity measures.
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THIS chapter starts by introducing some notions of propositional logic and logical
arguments. Afterwards, we introduce the notion of similarity measure between pairs

of arguments and discuss some properties it should satisfy. Then, we introduce the concept
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of concise argument, which solves some weaknesses of the original definition. Finally, we
propose some similarity measures and discuss their properties.

2.1 Background on Logic

2.1.1 Fundamental Concepts

Throughout this chapter, we consider propositional logic, i.e. a pair (L,`) where L is a
propositional language built up from a finite set P of variables, the two Boolean constants
> (true) and ⊥ (false), and the usual connectives (¬, ∨, ∧, →, ↔), and ` is the conse-
quence relation of the logic. A literal of L is either a variable of P or the negation of a
variable of P , the set of all literals is denoted P±. Two formulas φ, ψ ∈ L are logically

equivalent, denoted by φ ≡ ψ, iff φ ` ψ and ψ ` φ.
In what follows, we introduce different functions that will be used in the rest of the

chapter. We recall below the notion of Negation Normal Form of a propositional formula.

Definition 28 (Negation Normal Form). Let a formula φ ∈ L. φ is in negation normal

form (NNF) if and only if it does not contain implication or equivalence symbols, and

every negation symbol occurs directly in front of an atom.

Following Lang et al. [2003], we slightly abuse words and denote by NNF(φ) the for-
mula in NNF obtained from φ by "pushing down" every occurrence of ¬ (using De Mor-
gan’s law) and eliminating double negations. For instance, NNF(¬((p → q) ∨ ¬t)) =
p ∧ ¬q ∧ t.

Notations: let φ ∈ L.

• Variables: we denote by Var(φ), the function returning all the variables occurring
in the formula φ. For instance, Var(¬p ∧ q) = {p, q}.

• Literals: we denote by Lit(φ) the set of literals occurring in NNF(φ). For instance,
Lit(¬((p→ q) ∨ ¬t)) = {p,¬q, t}.

Lang et al. [2003] have defined when a formula depends on a given literal.

Definition 29 (Literals dependence). Let φ ∈ L and l ∈ P±. φ is independent from l iff

∃ψ ∈ L such that φ ≡ ψ and l /∈ Lit(ψ). Otherwise, φ is dependent on l. DepLit(φ)
denotes the set of all literals of P± that φ is dependent on.

For instance, DepLit((¬p ∨ q) ∧ (¬p ∨ ¬q)) = {¬p} while DepLit(¬p ∧ q) = {¬p, q}.
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Definition 30 (Logical consequences - CN). Let φ ∈ L. The function CN(φ) is the set of

all logical consequences of φ, i.e.

CN(φ) = {ψ ∈ L | φ ` ψ}.

Note that, this set of logical consequences is infinite even when the set of literals is finite.
This can be explained by the repetition of literals in conjunctions. For example: p, p ∧ p,
p ∧ p ∧ p, etc.

It is worth recalling that a model of a formula φ is an interpretation (i.e., a total func-
tion from P to {0, 1}) that makes φ true in the usual truth-functional way.

Definition 31 (Models - Mod). Let φ ∈ L. The function Mod(φ) denotes the set of all

models of the formula φ, i.e.,

Mod(φ) = {ω ∈ W | ω � φ},

whereW is the set of all interpretations.

Definition 32 (Isomorphic formulas). Let φ, ψ ∈ L. The two formulas are isomorphic

if and only if there exists a permutation (i.e. a bijective renaming function) π : P →
P \ Var(φ) of the variables of φ such that ψ and π(φ)1 become logically equivalent. We

say that φ and ψ are isomorphic w.r.t. π.

For instance, the formulas p ∧ ¬q and t ∧ ¬v are isomorphic w.r.t. the renaming function
π, where π(t) = p, π(v) = q, hence π(t ∧ ¬v) = p ∧ ¬q.

Definition 33 (Consistence of a set of formulas). Let Φ ⊆f L. Φ is consistent iff Φ 0 ⊥,

it is inconsistent otherwise.

For instance, the set of formulas {p,¬q} is consistent while {p,¬p} is inconsistent.

Let us now define when two finite sets Φ and Ψ of formulas are equivalent. A natural
definition is when the two sets have the same logical consequences, i.e., {φ ∈ L |Φ `
φ} = {ψ ∈ L |Ψ ` ψ}. Thus, the three sets {p, q}, {p∧p,¬¬q}, and {p∧ q} are pairwise
equivalent. This definition is strong since it considers any inconsistent sets as equivalent.
For instance, {p,¬p} and {q,¬q} are equivalent even if the contents (i.e. meaning of vari-
ables and formulas) of the two sets are unrelated (assume that p and q stand respectively
for "the sky is flamboyant red" and "this boat is a sailing ship").

1π(φ) denotes the formula obtained by replacing in φ each variable v ∈ Var(φ) by π(v).
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Furthermore, it considers the two sets {p, p → q} and {q, q → p} as equivalent while
their contents are different as well. Indeed, "a square is a rectangle” is different from "a
rectangle is a square" where p stand for "it’s a square" and q for "it’s a rectangle". One
may be true while the other is not. In what follows, we consider the following definition
borrowed from Amgoud et al. [2014]. It compares the formulas contained in sets instead
of the logical consequences of the sets.

Definition 34 (Equivalent Sets of Formulas). Two sets of formulas Φ,Ψ ⊆f L are equiv-
alent, denoted by Φ ∼= Ψ, iff ∀φ ∈ Φ, ∃ψ ∈ Ψ such that φ ≡ ψ and ∀ψ′ ∈ Ψ, ∃φ′ ∈ Φ
such that φ′ ≡ ψ′. We write Φ 6∼= Ψ otherwise.

Note that {p, p → q} 6∼= {q, q → p}, {p,¬p} 6∼= {q,¬q}, and {p, q} 6∼= {p ∧ q} while
{p, q} ∼= {p ∧ p,¬¬q}.

Between two sets of formulas, the following function allows to return formulas in the
first set that have an equivalent one in the second set.

Definition 35 (Co). For Φ,Ψ ⊆f L, Co(Φ,Ψ) = {φ ∈ Φ | ∃ψ ∈ Ψ such that φ ≡ ψ}.

Property 1. For all Φ,Ψ ⊆f L, Φ ∼= Ψ iff Co(Φ,Ψ) = Φ and Co(Ψ,Φ) = Ψ.

2.1.2 Logical Arguments

Let us now, define the notion of argument under propositional logic (L,`). Following
Besnard and Hunter [2001], an argument is a pair set of: propositional formulas represent-
ing the support of the argument, and a propositional formulas representing its conclusion.

Definition 36. [Logical argument] An argument built under the logic (L,`) is a pair

〈Φ, φ〉, where Φ ⊆f L and φ ∈ L, such that:

• Φ is consistent, (Consistency)

• Φ ` φ, (Validity)

• @Φ′ ⊂ Φ such that Φ′ ` φ. (Minimality)

An argument 〈Φ, φ〉 is trivial iff Φ = ∅ and φ ≡ >. Φ is called the support of the argument

and φ its conclusion.

Example 6. The following are examples of arguments: 〈{p ∧ q}, p〉, 〈{p, q}, p ∧ q〉,
〈{p}, p〉, 〈{p}, p ∨ q〉, 〈∅, p ∨ ¬p〉.
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Notations:

• We denote by Arg(L) the set of all arguments that can be built in (L,`) in the sense
of Definition 36 above.

• For any A = 〈Φ, φ〉 ∈ Arg(L), the functions Supp and Conc return respectively the
support (Supp(A) = Φ) and the conclusion (Conc(A) = φ) of A.

Let us now introduce the notion of sub-argument of an argument A. It is an argument
whose support is a subset of the support of A.

Definition 37 (Sub-argument). Let A,B ∈ Arg(L). A is a sub-argument of B, denoted

by A @ B, iff Supp(A) ⊆ Supp(B).

Note that an argument may be a sub-argument of itself according to Definition 37.

Example 6 (Cont.) The argument 〈{p}, p〉 is sub-argument of 〈{p, q}, p ∧ q〉 while is not

sub-argument of 〈{p ∧ q}, p ∧ q〉. Note that 〈∅, p ∨ ¬p〉 is sub-argument of 〈{p ∧ q}, p〉,
〈{p, q}, p ∧ q〉, 〈{p}, p〉, 〈{p}, p ∨ q〉 and 〈∅, p ∨ ¬p〉.

Proposition 1. Let A,B ∈ Arg(L). If A is trivial then for any B, A @ B.

We now define the notion of isomorphic arguments.

Definition 38 (Isomorphic Arguments). Two arguments A,B ∈ Arg(L) are isomorphic
with respect to a renaming function π iff the two following conditions hold:

• there exists a bijective function f : Supp(A) → Supp(B) such that for any φ ∈
Supp(A), φ and f(φ) are isomorphic w.r.t. π,

• Conc(A) and Conc(B) are isomorphic w.r.t. π.

Example 7. Let π be a renaming function such that π(r) = p, π(v) = q. The arguments

〈{p ∧ q}, p ∧ q〉 and 〈{r ∧ v}, r ∧ v〉 are isomorphic w.r.t. π while 〈{p ∧ q}, p ∧ q〉 and

〈{p→ q}, p→ q〉 are not.

In Amgoud et al. [2014], the authors studied when two arguments are equivalent. Two
arguments are equivalent if their supports (respectively their conclusions) are equivalent.

Definition 39 (Equivalent Arguments). Two arguments A,B ∈ Arg(L) are equivalent,

denoted by A ≈ B, iff

(Supp(A) ∼= Supp(B)) and (Conc(A) ≡ Conc(B)).
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Isomorphic arguments are not necessarily equivalent. For instance, 〈{p∧q}, p∧q〉 and
〈{r ∧ v}, r ∧ v〉 are isomorphic but not equivalent. All trivial arguments are equivalent.

Property 2. All trivial arguments are pairwise equivalent.

Next, we present a useful property of the function Co, which states that the number
of equivalent formulas in the first set is equal to the number of equivalent formulas in
the second set. It holds in the case of arguments but not in general (e.g. for sets with
equivalent formulas, the cardinality may vary).

Property 3. For allA,B ∈ Arg(L), |Co(Supp(A), Supp(B))| = |Co(Supp(B), Supp(A))|.

When the supports of arguments are equivalent their number of formulas is equal.

Property 4. For allA,B ∈ Arg(L), if Supp(A) ∼= Supp(B) then |Supp(A)| = |Supp(B)|.

2.2 Axiomatic Foundations of Similarity Measures

Our goal is to evaluate the extent to which pairs of logical arguments are similar. For
this purpose, we define a similarity measure, i.e. a function that assigns a value in the
unit interval [0, 1] to each pair of arguments. The greater the value, the more similar the
arguments are.

Definition 40 (Similarity Measure). A similarity measure is a function

sim : Arg(L)× Arg(L)→ [0, 1].

This definition is very general in that it accepts any function. In what follows, we
restrict the possible candidate functions by proposing a set of principles that any reason-
able similarity measure should satisfy. Principles are basic and desirable properties of a
measure sim. We may distinguish these principles according to their nature.

2.2.1 Principles

Indeed, for any pair of objects applied to a similarity measure, four principles may be
defined. In addition to these general principles, we propose six principles specific to sim-
ilarity measures applied between pairs of logical arguments.

2.2.1.1 General Principles

It is worth mentioning that despite the wide range of similarity measures in the litera-
ture (see Lesot et al. [2009a]; Choi et al. [2010] for surveys of existing measures), there
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are only two formal properties that have been identified in the literature: Maximality and
Symmetry which are presented below.

The first principle, called Maximality, deals with the case of total similarity. Maxi-
mality asserts that the similarity between an object and itself is maximal, i.e. here equal
to 1.

Principle 1 (Maximality). A similarity measure sim satisfies Maximality iff for any A ∈
Arg(L), sim(A,A) = 1.

Symmetry states that similarity is a symmetric notion.

Principle 2 (Symmetry). A similarity measure sim satisfies Symmetry iff for all A,B ∈
Arg(L), sim(A,B) = sim(B,A).

The following principle is a well-known property in the field of dissimilarity. The
Triangle Inequality guarantees that if a pair of objects is very similar to a third object,
then the first two objects are also very similar.

Principle 3 (Triangle Inequality). For all A,B,C ∈ Arg(L) the following holds:

1 + sim(A,C) ≥ sim(A,B) + sim(B,C).

The next general principle, called Substitution, states that two fully similar objects are
equally similar to any third object.

Principle 4 (Substitution). A similarity measure sim satisfies Substitution iff for allA,B,C

∈ Arg(L), if sim(A,B) = 1 then sim(A,C) = sim(B,C).

2.2.1.2 Principles based on Logical Arguments

The following principle states that the similarity between arguments must be independent
from the syntax (i.e. the name of the variables).

Principle 5 (Syntax Independence). A similarity measure sim satisfies Syntax Indepen-
dence iff for any renaming function π, for all A,B,A′, B′ ∈ Arg(L) such that:

• A and A′ are isomorphic w.r.t. π,

• B and B′ are isomorphic w.r.t. π,

it holds that sim(A,B) = sim(A′, B′).
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The next principle, called Minimality, ensures that similarity depends on the content

of the arguments. It states that if two arguments do not share any variables, then they are
completely different. An example of such arguments are 〈{p}, p ∨ q〉 and 〈{t}, t〉. Note
that a variable may appear in the conclusion of an argument even though it is not used in
the support (q in the case of 〈{p}, p ∨ q〉).

Principle 6 (Minimality). A similarity measure sim satisfies Minimality iff for all A,B ∈
Arg(L), if

• A and B are not equivalent,

•
⋃

φi∈Supp(A)
Var(φi) ∩

⋃
φj∈Supp(B)

Var(φj) = ∅ and

• Var(Conc(A)) ∩ Var(Conc(B)) = ∅,

then sim(A,B) = 0.

Note that the first condition excludes the special case of two trivial arguments while
keeping the possibility to compare a trivial with a non-trivial.

The following principle, called Non-Zero, considers that when two arguments have
common information (i.e. equivalent formulas) in their support, they present some simi-
larity.

Principle 7 (Non-Zero). A similarity measure sim satisfies Non-Zero iff for all A,B ∈
Arg(L), if Co(Supp(A), Supp(B)) 6= ∅, then sim(A,B) > 0.

The next principle, called (Strict) Monotony, states that the similarity between two
arguments increases as the supports of said arguments share more formulas. This means
the similarity increases with the addition of common logically equivalent formulas or the
deletion of distinct formulas.

Principle 8 (Monotony – Strict Monotony). A similarity measure sim satisfies Monotony
iff for all A,B,C ∈ Arg(L), if

1. Conc(A) ≡ Conc(B) or Var(Conc(A)) ∩ Var(Conc(C)) = ∅,

2. Co(Supp(A), Supp(C)) ⊆ Co(Supp(A)), Supp(B)),

3. Supp(B) \ Co(Supp(B), Supp(A)) = Co(Supp(B) \ Co(Supp(B), Supp(A)),
Supp(C) \ Co(Supp(C), Supp(A))),

then the following hold:
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• sim(A,B) ≥ sim(A,C) (Monotony)

• If

– the inclusion in condition 2 is strict, OR

– Co(Supp(A), Supp(C)) 6= ∅ and

|Supp(C) \ Co(Supp(C), Supp(A))| > |Supp(B) \ Co(Supp(B), Supp(A))|

then sim(A,B) > sim(A,C). (Strict Monotony)

The (Strict) Monotony fundamentally compares the elements in the support of the ar-
guments. For this reason, the first condition is to avoid the conclusions having an impact
on the comparison, by ensuring that the conclusions of A and B are equivalent or that
those of A and C are totally different. Then condition 2 indicates an inclusion of the ele-
ments in common between A and C in comparison to those between A and B. While con-
dition 3, on the other hand, requires that elements of B distinct from A are also elements of
C. In Amgoud and David [2018], the condition 3 was Supp(B) \ Co(Supp(B), Supp(A))
⊆ Supp(C) \ Co(Supp(C), Supp(A)), but there is a problem with the set inclusion. It is
syntax dependent, i.e., equivalent formulas are not considered in the inclusion. This is
why we propose a new condition 3.

Example 8. Consider the arguments below, it illustrate the problem with the old condition

3.

• A = 〈{p, p→ q}, q〉,

• B = 〈{p, t}, p ∧ t〉,

• C = 〈{t ∧ t}, t〉.

Here we can observe that B shares more information with A than C with A.Then
B and C have (t, t ∧ t) in their supports.But given that they are syntactically different,
with the old version of monotony we could not apply it. Therefore we propose the new
condition 3 that holds for equivalent formulas.

We may observe that the similarity between the supports of B and A is greater than
that between the supports of C and A, because:

• The common formulas between the supports of C and A are included in the com-
mon one between B and A, i.e. the empty set (i.e., ∅) is included in {p}.

• The different formulas of the support of B with respect to A and that of C with
respect to A are equivalent (t and t ∧ t). However, they are syntactically different,
and according to the old version of Monotony, we may not apply it. Here we propose
a new condition 3 that holds for equivalent formulas.
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Let us summarise this principle with another example.

Example 9. Consider the arguments below.

• A = 〈{p, p→ q}, q〉,

• B = 〈{p}, p〉,

• C = 〈{t}, t〉,

• D = 〈∅, t ∨ ¬t〉.

Monotony ensures that sim(A,B) ≥ sim(A,C), sim(D,A) ≥ sim(D,B) and sim(D,B)
≥ sim(D,A) while Strict Monotony states that sim(A,B) > sim(A,C). Note that if we

extend the definition of Strict Monotony by allowing strict inclusion in condition 3, then

we get sim(D,B) > sim(D,A) ≥ 0. Hence, sim(D,B) > 0 which is counter-intuitive.

When we compare the similarity between two supports, the question is whether we
should use the function Co or CN ? The advantages of one are the disadvantages of the
other, and vice versa. Two examples will illustrate this issue:

• First: {p, p → q} and {q, q → p}. Using Co, we distinguish the difference of rea-
soning between the two sets of formulas, but not with CN.

• Second: {p, q} and {p∧ q}. Using Co, the two sets are different while with CN, they
are equivalent.

Since a principle is a desirable property, it is better to choose the more cautious choice.
Here using Co we are able to tell the difference in the first example but not the similarity
in the second while CN forces the first example to be similar (wrongly) but detects the
similarity in the second case. Therefore, Co is more cautious in comparing supports.

The next principle, called Dominance, ensures that the similarity between two logical
arguments also depends on the conclusions of the arguments. The more consequences the
conclusions have in common, the greater the similarity.

In the case of conclusions, the Co function is not sufficient. It only allows determining
if two conclusions are equivalent, but that is not precise enough. Regarding CN, between
two conclusions, we may not have any loss of information due to an inference between
several formulas (problematic of CN between two supports). However, we are going to
show that without restriction on CN this Dominance is incompatible with Minimality.

We begin by presenting the function that we will use under the conditions of (Strict)
Dominance. Once we define the constraints, we will discuss the different functions con-
sidered with their advantages and disadvantages.
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In what follows, we define a finite CN using only the dependent literals of a formula.
In order to avoid working "up to equivalence" we will use a fixed set of formulas F ,
which contains one formula of L per equivalence class (i.e., for every φ ∈ L, there exists
a unique ψ ∈ F such that φ ≡ ψ). Moreover, in order to simplify the presentation and
be homogeneous, we assume that formulas from F are simplified with the minimum of
literals and we assume that each φ ∈ F contains only dependent literals.

Definition 41 (Dependent finite CN). Let φ ∈ L, the dependent finite CN is defined by

CNdf (φ) = {ψ ∈ CN(φ) s.t. ψ ∈ F and Lit(ψ) ⊆ DepLit(φ)}.

Let us illustrate this dependent finite CN.

Example 10. Let φ = p, ψ = (p ∨ q) ∧ (p ∨ ¬q), λ = p ∨ q, δ = p ∧ q ∈ L.

Then we obtain:

• CNdf (φ) = {p},

• CNdf (ψ) = {p},

• CNdf (λ) = {p ∨ q},

• CNdf (δ) = {p, q, p ∨ q, p ∧ q}.

Let us present the conditions of the principle using this dependent finite CN.

Principle 9. [Dominance – Strict Dominance] A similarity measure sim satisfies Domi-
nance iff for all A,B,C ∈ Arg(L), if

1. Supp(B) ∼= Supp(C),

2. CNdf (Conc(A)) ∩ CNdf (Conc(C)) ⊆ CNdf (Conc(A)) ∩ CNdf (Conc(B)),

3. CNdf (Conc(B)) \ CNdf (Conc(A)) ⊆ CNdf (Conc(C)) \ CNdf (Conc(A)),

then the following hold:

• sim(A,B) ≥ sim(A,C). (Dominance)

• If the inclusion in condition 2 is strict or, CNdf (Conc(A))∩ CNdf (Conc(C)) 6= ∅ and

condition 3 is strict, then sim(A,B) > sim(A,C). (Strict
Dominance)

Let us illustrate this last principle.

Example 11. Consider the three arguments below.



2.2. AXIOMATIC FOUNDATIONS OF SIMILARITY MEASURES 43

• A = 〈{p ∧ q ∧ t}, p〉,

• B = 〈{p ∧ q ∧ t}, p ∧ q〉,

• C = 〈{p ∧ q ∧ t}, p ∧ q ∧ t〉.

Dominance ensures that sim(A,B) ≥ sim(A,C) and sim(C,B) ≥ sim(C,A). Strict

Dominance ensures sim(A,B) > sim(A,C) and sim(C,B) > sim(C,A).

First, let us see why we defined this dependent finite CN instead of using the classical
CN. The reason is that we do not want to give similarity between arguments that have
no information in common (i.e. Minimality). To illustrate the problem with classical CN,
consider the following example.

Example 12. Consider the three arguments below.

• A = 〈{p}, p〉,

• B = 〈{q ∧ t}, q〉,

• C = 〈{q ∧ t}, q ∧ t〉.

If we apply the Strict Dominance with the classical CN, we get that sim(A,B) >

sim(A,C) which is incompatible with the Minimality principle (which ensures that sim
(A,B) = 0). The problem comes from the fact that we may deduce a formula from any
other formula (e.g., p ` p ∨ q).

Hence, every formula has a deduction in common (e.g. p and q both infer p ∨ q). Our
goal is to give a degree of similarity based only on the content present in the formulas (i.e.
the literals). The remaining question is whether to restrict inferences to present literals or
dependent literals. As for the choice between Co and CN in the supports, we have chosen
the less restrictive one. It is worth noting that using present literals allows a better accu-
racy. For instance, between the formulas (p ∨ q) ∧ (p ∨ ¬q) and p ∨ q, we will detect the
common inference p∨ q. Whereas with dependent literals this is not possible (because the
first formula reduces to p and thus p∨ q is no longer inferable). However, with dependent
literals, we ensure that for any equivalent conclusion (i.e. let φ, ψ ∈ L, CN(φ) = CN(ψ)),
they obtain the same degree of similarity. On the other hand, with the use of a CN restricted
to literals this is not guaranteed. This is because with different literals we can construct
different equivalent formulas (e.g., (p∨ q)∧ (p∨¬q) ≡ p). The formulas deduced from a
CN restricted to present literals will therefore not be the same, whereas for a CN restricted
to dependent literals they will be (thanks to the uniqueness of the dependent literals). This
is why we used the dependent finite CN to define (Strict) Dominance. About the finitude of
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this new CN, its addition is due to the pointlessness of having several equivalent formulas,
and it will be useful for the definition of the similarity measure.

Note that, in order not to limit our representation of arguments, we accept that an ar-
gument may conclude new literals by disjunction. However, once the argument is defined,
we do not want to use the set of inferences on the non-present literals (to reason only on
the present information).

Moreover, to check for common information between conclusions, we also thought of
using models (i.e., Mod). Unfortunately, between inconsistent formulas the models do not
allow to detect common information.

Example 13. Consider the three arguments below.

• A = 〈{p ∧ ¬t}, p ∧ ¬t〉,

• B = 〈{p ∧ t}, p ∧ t〉,

• C = 〈{p ∧ t}, t〉.

Strict Dominance ensures sim(A,B) > sim(A,C) because we use CN while using models

we have Mod(Conc(A)) ∩ Mod(Conc(B)) = Mod(Conc(A)) ∩ Mod(Conc(C)) = ∅ and so

we cannot distinguish any difference between these conclusions.

Note that compared to the definition in Amgoud and David [2018], we remove the
condition in the strict version saying that the supports of A and B must have a common
element. This principle focuses on the conclusion.

Example 14. Let A,B,C ∈ Arg(L) such that:

• A = 〈{t, p}, t ∧ (p ∨ q)〉,

• B = 〈{t, q}, t ∧ (p ∨ q)〉,

• C = 〈{t, q}, t ∧ q〉.

The principle Strict Dominance ensure that sim(A,B) > sim(A,C).

Two limitations can be observed in the old version:

1. Constraining the supports to have a common formula is limited by the syntax, as we
will see below with the arguments {A1, B1, C1} there is no common formula due
to their syntax whereas they are semantically equivalent.

2. As explained before, it is accepted that an argument infers a literal not present in
the support, therefore without information in common in the support (as we will see
below with arguments {A2, B2, C2}) we can still have similarity in the conclusions.
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Therefore if we accept to use the Strict Dominance in the example 14 then we can
accept and generalize the principle to be used in the example 15.

Example 15. Let A1, B1, C1, A2, B2, C2 ∈ Arg(L) such that:

• A1 = 〈{t, p}, t ∧ (p ∨ q)〉,

• B1 = 〈{t ∧ q}, t ∧ (p ∨ q)〉,

• C1 = 〈{t ∧ q}, t ∧ q〉.

• A2 = 〈{p}, p ∨ q〉,

• B2 = 〈{q}, p ∨ q〉,

• C2 = 〈{q}, q〉.

The principle Strict Dominance ensure that sim(A1, B1) > sim(A1, C1) and sim(A2, B2) >
sim(A2, C2).

The next principle, called Independent Distribution, concerns the non-importance of
the location of different elements between pairs of arguments. It ensures that when two
pairs of arguments have the same common and different elements, no matter how these
different elements are distributed, their similarity is equal.

Principle 10 (Independent Distribution). A similarity measure sim satisfies Independent
Distribution iff for all A,B,A′, B′ ∈ Arg(L), if

• Var(Conc(A)) ∩ Var(Conc(B)) = Var(Conc(A′)) ∩ Var(Conc(B′)) = ∅,

• Co(Supp(A), Supp(B)) ∼= Co(Supp(A′), Supp(B′)),

• Supp(A) ∪ Supp(B) ∼= Supp(A′) ∪ Supp(B′),

then sim(A,B) = sim(A′, B′)

Example 16. Let A,B,A′, B′ ∈ Arg(L):

• A = 〈{p, p→ q}, q〉,

• B = 〈{p, p→ r}, r〉,

• A′ = 〈{p, p→ q, p→ r}, q ∧ r〉,

• B′ = 〈{p}, p〉.

With the axiom of Independent Distribution we have, sim(A,B) = sim(A′, B′).

To conclude the axiomatic study, let us see the links between these principles.
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2.2.2 Compatibility and Dependency Results

All the principles (1 to 10) are compatible, in that they can be satisfied all together by a
similarity measure.

Proposition 2. All the principles are compatible.

The principles are independent, i.e. none of them follows from the others. A notable
exception is Substitution, which follows from a subset of principles.

Proposition 3. If a similarity measure sim satisfies Symmetry, Maximality, Strict Monotony,

Dominance, and Strict Dominance, then sim satisfies Substitution.

Regarding Non-Zero, one may wonder whether Strict Monotony and Minimality im-
ply it, but they do not. Let two argumentsA andB having common formulas and different
formulas in their support, and C an argument completely different from A and B.

• According to Non-Zero the similarity between A and B is strictly greater than 0.

• According to Minimality the similarity between A and C is equal to 0.

• We would like to apply Strict Monotony such that sim(A,B) > sim(A,C) and
knowing that sim(A,C) = 0 (Minimality), we would have the same result as in
Non-Zero.

• However, Strict Monotony may not be applied, as the different formulas of B with
respect to A are not in C (see condition 3 of Monotony). In other words, Strict
Monotony with Minimality implies only a special case of Non-Zero (the one where
the differences of B from A are included in C).

Let us consider some consequences of satisfying the proposed principles. We propose
a characterization of all cases where the similarity between two arguments is maximal
(equal to 1). Let us present the result gradually. First, we show that any measure satisfying
Maximality and Monotony declares that equivalent arguments are completely similar.

Theorem 7. Let sim be a similarity measure that satisfies Maximality and Monotony. For

all A,B ∈ Arg(L),

if A ≈ B, then sim(A,B) = 1.

Then we show that, if in addition to Maximality, a similarity measure satisfies Strict
Monotony and Strict Dominance, then two fully similar arguments are necessarily equiv-
alent.
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Theorem 8. Let sim be a similarity measure that satisfies Maximality, Strict Monotony,

and Strict Dominance. For all A,B ∈ Arg(L) the following holds:

if sim(A,B) = 1 then A ≈ B.

From the two previous results, it follows that any similarity measure that satisfies Max-
imality, Monotony, Strict Monotony and Strict Dominance assigns the maximum value 1
to pairs of equivalent arguments and only to equivalent pairs.

Corollary 1. Let sim be a similarity measure that satisfies Maximality, Monotony, Strict

Monotony, and Strict Dominance. For all A,B ∈ Arg(L) the following holds:

sim(A,B) = 1 iff A ≈ B.

The following result shows that a non-trivial argument is completely different from
any trivial arguments. This is ensured when the similarity measure satisfies Minimality,
and Substitution.

Proposition 4. Let sim be a similarity measure which satisfies Minimality, and Substitu-

tion. For all A,B ∈ Arg(L),

if A is non-trivial and B is trivial, then sim(A,B) = 0.

The next result shows that a non-trivial sub-argument has always some similarity with
its argument. This is the case when the similarity measure satisfies Strict Monotony, or
Non-Zero.

Proposition 5. Let sim be a similarity measure which satisfies Strict Monotony, or Non-

Zero. For all A,B ∈ Arg(L),

if B @ A and B is non-trivial, then sim(A,B) > 0.

Similarity measures satisfying Monotony satisfy some monotony property regarding
the sub-argument relationship between arguments.

Proposition 6. Let sim be a similarity measure which satisfies Monotony. For allA,B,C ∈
Arg(L), if

• Var(Conc(A)) ∩ Var(Conc(C)) = ∅, and

• C @ B @ A,

then sim(A,B) ≥ sim(A,C).
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Strict Dominance ensures that the more consequences shared by the conclusions of
two arguments, the more similar the arguments are.

Proposition 7. Let sim be a similarity measure which satisfies Strict Dominance. For all

A,B,C ∈ Arg(L), if

• A,B,C are non trivial,

• Supp(A) ∼= Supp(B) ∼= Supp(C),

• Conc(A) ` Conc(B) ` Conc(C),

• Conc(C) 6` Conc(B), Conc(B) 6` Conc(A),

then sim(A,B) > sim(A,C).

The last result states that the union of supports of two fully similar arguments is con-
sistent. This is particularly the case for similarity measures that satisfy Maximality, Strict
Monotony, and Strict Dominance.

Proposition 8. Let sim be a similarity measure which satisfies Maximality, Strict Monoto-

ny, and Strict Dominance. For all A,B ∈ Arg(L), if sim(A,B) = 1, then Supp(A) ∪
Supp(B) is consistent.

We have seen a set of principles for similarity measures between logical arguments,
followed by a study of these properties. However, it turns out that for the principles related
to supports, another vision of similarity is possible. Indeed, it is possible according to
definition 36, that an argument has irrelevant information in its support. For instance the
argument 〈{p∧q}, p〉〉 is well-formed, i.e. consistent, minimal in the sense of set inclusion
and the support infers the conclusion. However, the knowledge q is useless for inferring
p, as it is only syntactically related to p. Such arguments are non-concise and assessment
of their similarities with other arguments may lead to inaccurate results.

2.3 Concise Arguments

To determine the degree of similarity between logical arguments, different methods may
be designed. Since arguments have a set of logical formulas in their support and a log-
ical formula in their conclusion, intuitively it may be worthwhile to adapt the symbolic
data similarity measures to compute a degree of similarity between logical arguments.
For instance, the function Co defined in the previous section 2.1 may be used to count the
number of formulas in common. However, as seen before, using classical definition of a
logical argument (Def. 36) may result in irrelevant information in formulas used for the
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conclusion. This may affect the accuracy of a similarity measure.

Let us illustrate the problem of assigning a degree of similarity between arguments
when one of them has irrelevant information. Assume that they are measured according
to the common equivalent formulas included in the arguments. Hence, the two arguments
A = 〈{p∧ q}, p〉 and B = 〈{p}, p〉 are not completely similar, since p∧ q 6≡ p. Neverthe-
less, they support the same conclusion and on basis of the same ground (p). This is due to
the non-concision of A, which contains the unnecessary information q in its support. In
what follows, we refine the arguments by removing such information from their supports.
The idea is to weaken the formulas in the supports.

Definition 42 (Refinement). Let A,B ∈ Arg(L) such that A = 〈{φ1, · · · , φn}, φ〉 and

B = 〈{φ′1, · · · , φ′n}, φ′〉. B is a refinement of A iff:

1. φ = φ′,

2. There exists a permutation ρ of the set {1, · · · , n} such that ∀k ∈ {1, · · · , n},
φk ` φ′ρ(k) and Lit(φ′ρ(k)) ⊆ DepLit(φk).

Let Ref be a function that returns the set of all refinements of a given argument.

The first condition ensures that a refined argument does not change the conclusion
of its original argument. In addition, we set a strong condition with equality and not
equivalence in order to simplify the set of refinements of an argument.

The second condition states that each formula of an argument’s support is weakened.
Furthermore, novel literals are not allowed in the weakening step since such literals would
negatively impact similarity between supports of arguments. Finally, literals from which
a formula is independent should be removed since they are useless for inferring the con-
clusion of an argument.

It is worth mentioning that an argument may have several refinements as shown in the
following example.

Example 17. The following pairs are all arguments.
A = 〈{p ∧ q}, p〉 B = 〈{p}, p〉
C = 〈{p ∧ q ∧ r}, r〉 D = 〈{p ∧ q, p ∧ r}, p ∧ q ∧ r〉
E = 〈{p ∧ q, (p ∨ q)→ r}, r〉 F = 〈{p ∧ q}, p ∨ q〉

The following set are subset of refinement of these arguments.

• {〈{p}, p〉, 〈{p ∧ p}, p〉} ⊆ Ref(A)

• {〈{p ∧ r}, r〉, 〈{q ∧ r}, r〉, 〈{r}, r〉} ⊆ Ref(C)
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• {〈{p ∧ q, r}, p ∧ q ∧ r〉, 〈{q, p ∧ r}, p ∧ q ∧ r〉} ⊆ Ref(D)

• {〈{p ∨ q, (p ∨ q)→ r}, r〉, 〈{p, p→ r}, r〉, 〈{q, q → r}, r〉} ⊆ Ref(E)

• {〈{p}, p ∨ q〉, 〈{q}, p ∨ q〉, 〈{p ∨ q}, p ∨ q〉} ⊆ Ref(F )

The following property shows that there exists a unique possible permutation ρ for
each refinement of an argument.

Proposition 9. For all A = 〈{φ1, · · · , φn}, φ〉, B = 〈{φ′1, · · · , φ′n}, φ〉 ∈ Arg(L) such

that B ∈ Ref(A), there exists a unique permutation ρ of the set {1, · · · , n} such that

∀k ∈ {1, · · · , n}, φk ` φ′ρ(k).

A trivial argument is the only refinement of itself.

Proposition 10. For any trivial argument A ∈ Arg(L), Ref(A) = {A}.

A non-trivial argument has a non-empty set of refinements. Moreover, it is a refine-
ment of itself only if the formulas of its support do not contain literals from which they
are independent.

Proposition 11. Let A ∈ Arg(L) be a non-trivial argument. The following hold:

• Ref(A) 6= ∅,

• A ∈ Ref(A) iff ∀φ ∈ Supp(A), Lit(φ) = DepLit(φ).

We show next that the function Ref is idempotent and that equivalent arguments have
the same refinements.

Proposition 12. Let A,B ∈ Arg(L). The following hold:

• If B ∈ Ref(A), then Ref(B) ⊆ Ref(A).

• If A ≈ B, then Ref(A) = Ref(B).

We are now ready to define the notion of concise argument. An argument is concise
if it is equivalent to any of its refinements. This means that a concise argument cannot be
further refined.

Definition 43 (Conciseness). An argument A ∈ Arg(L) is concise iff for all B ∈ Ref(A),

A ≈ B.

Example 17 (Cont.) The two refinements 〈{p∧ r}, r〉 and 〈{q∧ r}, r〉 of the argument C
are not concise. Indeed, 〈{r}, r〉 ∈ Ref(〈{p ∧ r}, r〉), 〈{r}, r〉 ∈ Ref(〈{q ∧ r}, r〉) while
〈{r}, r〉 6≈ 〈{p ∧ r}, r〉, and 〈{r}, r〉 6≈ 〈{q ∧ r}, r〉.
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For any argument from Arg(L), we generate its concise versions. The latter are simply
its concise refinements.

Definition 44 (Concise Refinements). A concise refinement of an argument A ∈ Arg(L)
is any concise argument B such that B ∈ Ref(A). We denote the set of all concise refine-

ments of A by CR(A).

Example 17 (Cont.)

• 〈{p}, p〉 ∈ CR(A)

• 〈{r}, r〉 ∈ CR(C)

• {〈{p ∧ q, r}, p ∧ q ∧ r〉, 〈{q, p ∧ r}, p ∧ q ∧ r〉} ⊆ CR(D)

• {〈{p ∨ q, (p ∨ q)→ r}, r〉, 〈{p, p→ r}, r〉, 〈{q, q → r}, r〉} ⊆ CR(E)

• {〈{p}, p ∨ q〉, 〈{q}, p ∨ q〉, 〈{p ∨ q}, p ∨ q〉} ⊆ CR(F )

Next we state some properties of concise refinements.

Proposition 13. Let A ∈ Arg(L). The following hold:

1. For any B ∈ CR(A) the following hold: B ∈ Ref(B) and ∀C ∈ Ref(B), C ≈ B.

2. CR(A) 6= ∅.

3. If A is non-trivial, then CR(A) is infinite.

4. If A ≈ B, then CR(A) = CR(B).

5. ∀B ∈ Ref(A), CR(B) ⊆ CR(A).

The following result shows that any formula in the support of a concise argument
cannot be further weakened without introducing additional literals.

Proposition 14. Let A,B ∈ Arg(L) such that B ∈ CR(A). For any φ ∈ Supp(B), if

∃ψ ∈ L such that φ ` ψ, ψ 6` φ, and 〈(Supp(B) \ {φ})∪ {ψ}, Conc(B)〉 ∈ Arg(L), then

Lit(ψ) \ Lit(φ) 6= ∅.

2.4 Similarity Measures

In this section, we will present various similarity measure, for logical arguments. We
start by those that deal only with concise arguments. In other words, we assume that
arguments are concise. We provide two kinds of measures: syntactic measures and mixed
ones. The latter are based on syntax for comparing supports and semantics for comparing
conclusions of arguments. In a second step we will see how to use these measures on
non-concise arguments.
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2.4.1 Syntactic Similarity Measures

The measures we propose are based on measures that exist in the litterature, namely
those recalled in table 1.4, in Section 1.3.2.1. Indeed, we adapt Jaccard measure (Jac-
card [1901]), Dice measure (Dice [1945]), Sorensen one (Sørensen [1948]), and those
proposed in (Anderberg [1973]; Sneath et al. [1973]; Ochiai [1957]; Kulczynski [1927]).
These measures are suitable in the argumentation context since an argument may be seen
as a pair of two sets: one set containing the formulas of the support and another one
containing the conclusion. In what follows, we use these measures for assessing simi-
larity between supports (respectively conclusions) of pairs of arguments. However, those
measures cannot be applied directly to supports of arguments since supports may have
different but still equivalent formulas. For instance, the two sets {p} and {p ∧ p} are
equivalent while their intersection is empty. Thus, we extend each measure of Table 1.4
using the function Co as shown in Table 2.1 in case of non-empty sets.

Extended Jaccard sj(Φ,Ψ) = |Co(Φ,Ψ)|
|Φ|+|Ψ|−|Co(Φ,Ψ)|

Extended Dice sd(Φ,Ψ) = 2|Co(Φ,Ψ)|
|Φ|+|Ψ|

Extended Sorensen ss(Φ,Ψ) = 4|Co(Φ,Ψ)|
|Φ|+|Ψ|+2|Co(Φ,Ψ)|

Extended Symmetric Anderberg sa(Φ,Ψ) = 8|Co(Φ,Ψ)|
|Φ|+|Ψ|+6|Co(Φ,Ψ)|

Extended Sokal and Sneath 2 sss(Φ,Ψ) = |Co(Φ,Ψ)|
2(|Φ|+|Ψ|)−3|Co(Φ,Ψ)|

Extended Ochiai so(Φ,Ψ) = |Co(Φ,Ψ)|√
|Φ|
√
|Ψ|

Extended Kulczynski 2 sku(Φ,Ψ) = 1
2

(
|Co(Φ,Ψ)|
|Φ| + |Co(Φ,Ψ)|

|Ψ|

)
Table 2.1: Similarity measures for sets Φ,Ψ ⊆f L

Note that the original definitions compare non-empty sets. In the argumentation con-
text, trivial arguments have an empty support. Thus, the definition of each measure fol-
lows the following schema that we illustrate with the Jaccard-based measure. For all
Φ,Ψ ⊆f L,

sj(Φ,Ψ) =


|Co(Φ,Ψ)|

|Φ|+|Ψ|−|Co(Φ,Ψ)| if Φ 6= ∅,Ψ 6= ∅
1 if Φ = Ψ = ∅
0 otherwise.

Let us illustrate the definition of extended Jaccard measure by the following example.

Example 18. Consider the following sets of formulas:

• Φ0 = {p, q},

• Φ1 = {r, s, r ∧ s→ t},
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• Φ2 = {r, s, z, r ∧ s ∧ z → u},

• Φ3 = {¬¬r, s}, and

• Φ4 = {r,¬¬s}.

It can be checked that sj(Φ0,Φ1) = 0, sj(Φ1,Φ2) = 0.4, sj(Φ1,Φ3) = 0.66, sj(Φ2,Φ3) =
0.5, and sj(Φ3,Φ4) = 1.

The measures of Table 2.1 evaluate in the same way pairs of sets containing each
one formula. They assign value 1 if the two formulas of the sets are equivalent and 0
otherwise.

Proposition 15. For any x ∈ {j, d, s, a, ss, o, ku}, for all φ, ψ ∈ L, the following holds:

sx({φ}, {ψ}) =

 1 if φ ≡ ψ

0 otherwise.

We are now ready to introduce our similarity measures between pairs of logical argu-
ments. They are syntactic in nature, and are based on a parameter σ ∈ ]0, 1[ which allows
a user to give different importance degrees to supports and conclusions. Indeed, one may
declare two arguments as similar as soon as they have quite equivalent supports, or my be
more requiring by ensuring that the conclusions also are equivalent. Due to the previous
result, the same measure is used for assessing similarity between supports an similarity
between conclusions of pairs of logical arguments.

Definition 45 (Extended Measures). Let 0 < σ < 1. We define simσx, with

x ∈ {j, d, s, a, ss, o, ku}, as a function assigning to any pair (A,B) ∈ Arg(L)× Arg(L)
a value

simσx(A,B) = σ · sx(Supp(A), Supp(B)) + (1− σ) · sx({Conc(A)}, {Conc(B)}).

Note that σ cannot take the value 0 since the corresponding similarity measure would
ignore the supports of arguments, and cannot get value 1 since the measure would ig-
nore the conclusions. Both cases are undesirable since an argument is a pair (support,
conclusion).

Example 18 (Cont.) Let σ = 0.5 and x = sj. Consider the following arguments:

• A0 = 〈{p, q}, p ∧ q〉,

• A1 = 〈{r, s, r ∧ s→ t}, t〉,

• A2 = 〈{r, s, z, r ∧ s ∧ z → u}, u〉,
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• A3 = 〈{¬¬r, s}, r ∧ s〉, and

• A4 = 〈{r,¬¬s}, r ∧ ¬¬s〉.

It can be checked that we get the following values: sim0.5
j (A0, A1) = 0, sim0.5

j (A1, A2) =
0.5×0.4+0.5×0 = 0.2, sim0.5

j (A1, A3) = 0.5×0.66+0.5×0 = 0.33, sim0.5
j (A2, A3) =

0.5× 0.5 + 0.5× 0 = 0.25, and sim0.5
j (A3, A4) = 1.

Due to Proposition 15, the definition of the Extended Measures can be simplified as
follows:

Proposition 16. For any 0 < σ < 1, for any x ∈ {j, d, s, a, ss, o, ku}, for all (A,B) ∈
Arg(L)× Arg(L), the following property holds:

simσx(A,B) =


σ · sx(Supp(A), Supp(B)) + (1− σ)

if Conc(A) ≡ Conc(B)
σ · sx(Supp(A), Supp(B)) otherwise.

We show that any measure simσx assigns values from the unit interval [0, 1] to any pair
of arguments. Thus, any simσx is a similarity measure in the sense of Definition 40.

Proposition 17. For any 0 < σ < 1, for any x ∈ {j, d, s, a, ss, o, ku}, for all A,B ∈
Arg(L), simσx(A,B) ∈ [0, 1]. Hence, simσx is a similarity measure.

Similarity measures simσx satisfy a same group of principles, violate all Strict Domi-
nance and the satisfaction of principles Triangle Inequality and Independent Distribution
differ.

Theorem 9. For any 0 < σ < 1:

• for any x ∈ {j, d, s, a, ss, o, ku}, simσx

– violates Strict Dominance, and

– satisfies Maximality, Symmetry, Substitution, Syntax Independence, Minimal-

ity, Non-Zero, Monotony, Strict Monotony and Dominance.

• for any x ∈ {d, s, a}, simσx

– violates Triangle Inequality, and

– satisfies Independent Distribution.

• for any x ∈ {o, ku}, simσx

– violates Triangle Inequality and Independent Distribution.
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• for any x ∈ {j, ss}, simσx

– satisfies Triangle Inequality and Independent Distribution.

As we showed in Theorem 9, some measures simσx with x ∈ {j, d, s, a, ss, o, ku},
satisfy and violate the same set of principles. An interesting question is thus: are there
any links between these measures? Do they return the same values? For answering these
questions, we introduce the notion of equivalent measures, borrowed from Lesot et al.

[2009a] and other like Lerman [1967].

Definition 46 (Equivalent measures). Two similarity measures sim and sim′ are equiva-

lent iff for all A,B,C,D ∈ Arg(L),

sim(A,B) ≤ sim(C,D)⇐⇒ sim′(A,B) ≤ sim′(C,D).

The following result compares the values assigned by each measure for a given pair
of arguments. It shows that for a fixed σ, the three measure simσss, simσj , simσd give the
lowest degree of similarity.

Theorem 10. Let 0 < σ < 1, for any A,B ∈ Arg(L):

• simσss(A,B) ≤ simσj (A,B) ≤ simσd (A,B) ≤ simσs (A,B) ≤ simσa (A,B).

• simσss(A,B) ≤ simσj (A,B) ≤ simσd (A,B) ≤ simσo (A,B) ≤ simσku(A,B).

From these results, it follows that there are two sets of equivalent similarity measures.

Corollary 2. Let 0 < σ < 1.

• simσss, simσj , simσd , simσs and simσa are pairwise equivalent, and

• simσss, simσj , simσd , simσo and simσku are pairwise equivalent.

Despite the fact of violating Strict Dominance, any measure simσx assigns the max-
imal value 1 only to equivalent arguments. This result generalizes the binary similarity
measure defined in Amgoud et al. [2014], where arguments are either equivalent (value
1) or completely different (value 0).

Theorem 11. For any 0 < σ < 1, for any x ∈ {j, d, s, a, ss, o, ku}, for all A,B ∈
Arg(L),

simσx(A,B) = 1 iff A ≈ B.

Measures simσx assign the minimal value 0 to pairs of arguments whose conclusions
are not equivalent and their supports do not share any equivalent formula.
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Theorem 12. For any 0 < σ < 1, for all x ∈ {j, d, s, a, ss, o, ku}, for all A,B ∈
Arg(L),

simσx(A,B) = 0 iff

 Co(Supp(A), Supp(B)) = ∅ and

Conc(A) 6≡ Conc(B).

As explained before (after Principle 8), assessing similarity semantically over a set of
formulas (support) may lead to undesirable results. Therefore, it is safer to restrict to syn-
tactic similarity concerning supports. However, regarding similarity between conclusions,
it is interesting to take into account this semantic notion (as explained after the principle 9
- Dominance). In what follows, we introduce measures that combine a syntactic measure
(for supports) with a semantic measure (for conclusions).

2.4.2 Mixed Syntactic and Semantic Similarity Measure

We have seen in the previous section, that syntactic measures simσx violate Strict Dom-
inance. Thus, they do not distinguish between arguments such as A = 〈{p ∧ q ∧ t}, p〉,
B = 〈{p∧ q ∧ t}, p∧ q〉, and C = 〈{p∧ q ∧ t}, p∧ q ∧ t〉. They all return simσx(A,B) =
simσx(A,C) whileA is more similar toB than toC. Indeed, those measures are not able to
capture the fact that A’s conclusion is closer to B’s conclusion than to C’s. We therefore
propose to use a semantic approach to compare conclusions. The objective of the follow-
ing measure is to semantically capture the similarities between two formulas. To do so
with inferences in common (such as p and p ∧ q) and without giving similarities between
formulas with no dependent literals in common (such as p and q), we use the function
CNdf .

Definition 47 (CN-based Jaccard Measure). The CN-based Jaccard measure is a function

scnj assigning for all φ, ψ ∈ L, the value:

scnj(φ, ψ) = |CNdf (φ) ∩ CNdf (ψ)|
|CNdf (φ) ∪ CNdf (ψ)|

Let us illustrate the measure with an example.

Example 19. Let φ = p, ψ = q, δ = p ∨ q, γ = p ∧ q ∈ L.

By applying scnj between these formulas we get:

• scnj(φ, ψ) = 0,

• scnj(φ, δ) = 0,

• scnj(φ, γ) = 1
4 = 0.25,

• scnj(δ, γ) = 1
4 = 0.25.



2.4. SIMILARITY MEASURES 57

We are now ready to introduce the second set of similarity measures. They use any of
the previous measures on supports and the novel scnj on conclusions.

Definition 48 (Mixed Extended Measure). Let 0 < σ < 1. We define simσx−cnj, with

x ∈ {j, d, s, a, ss, o, ku}, as a function assigning to any pair (A,B) ∈ Arg(L)× Arg(L)
a value

simσx−cnj(A,B) = σ.sx(Supp(A), Supp(B)) + (1− σ)scnj(Conc(A), Conc(B)).

The objective of these mixed measures is to overcome the lack of precision on the
evaluation of the similarity between arguments. In terms of principles, this results in the
aim of satisfying Strict Monotony. Having already studied the behavior of the 7 syntactic
measures between supports, we will restrict the mixed measures to the simj−cnj measure
in the rest of the document.
Notation: we simplify simj−cnj by simcnj called Mixed CN-based Jaccard Measure.

Theorem 13. For any 0 < σ < 1, the similarity measure simσcnj satisfies all the princi-

ples.

From Corollary 1 and Theorem 13, we can deduce that simσcnj gives the maximum
degree of similarity only if the arguments are equivalent.

Corollary 3. Let A,B ∈ Arg(L), for any 0 < σ < 1, simσcnj(A,B) = 1 iff A ≈ B.

The following table summarises the satisfaction of the principles by the different sim-
ilarity measures for σ ∈ ]0, 1[.
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simσj simσd simσs simσa simσss simσo simσku simσcnj

Maximality • • • • • • • •
Symmetry • • • • • • • •
Triangular Inequality • ◦ ◦ ◦ • ◦ ◦ •
Substitution • • • • • • • •
Syntax Independence • • • • • • • •
Minimality • • • • • • • •
Non-Zero • • • • • • • •
Monotony • • • • • • • •
Strict Monotony • • • • • • • •
Dominance • • • • • • • •
Strict Dominance ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
Independent Distribution • • • • • ◦ ◦ •

The symbol • means the measure satisfies the principle and ◦ means the measure
violates the principle.

Table 2.2: Satisfaction of the principles of similarity measures for concise arguments

Note that in Amgoud and David [2018], the authors proposed a mixed similarity mea-
sure (named Model-based Measure) looking like simσcnj. It also uses sj between the sup-
ports but for the conclusions it is a different measure. This semantic measure, called
Model-based Jaccard, is defined as scnj, but instead of applying the function CNdf be-
tween conclusions, it uses Mod (i.e. models). However, as discussed after the definition of
Dominance (Principle 9), the use of models is not desirable because it assigns some de-
gree of similarity even for different formulas, i.e., formulas without any common literal.
This leads to the violation of the Minimality principle. Moreover, in the case where the
conclusions contain both common and contradictory information (see Example 13), the
use of models does not allow the measurement of redundant information. This leads to
the violation of the Strict Dominance principle.

In this section we considered concise arguments. In the next section we propose mea-
sures that deal properly with non-concise arguments.

2.4.3 Similarity Measures for Non-Concise Arguments

As already said in previous sections, although the similarity measures from Definition 45
return reasonable results in most cases, they might lead to inaccurate assessments if the
arguments are not concise. Indeed, as we illustrated in Section 2.3, the measures from
Definitions 45 and 48, declare the two arguments A = 〈{p ∧ q}, p〉 and B = 〈{p}, p〉 as
not completely similar, while they support the same conclusion with the same ground (p).
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In this section, we extend those measures in two ways, leading to two families of sim-
ilarity measures, using concise refinements of arguments, and we show that they properly
resolve the drawbacks of the existing measures. Note that by Proposition 13(3), every
non-trivial argument A has infinitely many concise refinements. This is due to the fact
that every formula α from a support of a concise refinement can be equivalently rewritten
in infinitely many ways using the same set of literals (eg. α ≡ α∧α ≡ α∧α∧α ≡ · · · ).
In the rest of this thesis, we will consider only one argument from CR(A) per equivalence
class.

Definition 49. Let A ∈ Arg(L). We define the set

CR(A) = {B ∈ CR(A) | Supp(B) ⊂ F}.

In this way, we obtain a finite set of non-equivalent concise refinements.

Proposition 18. For every A ∈ Arg(L), the set CR(A) is finite.

We propose now our first family of similarity measures. In the following definition,
for A ∈ Arg(L), Σ ⊆f Arg(L) and a similarity measure sim from Definition 45 or 48,
we denote by Max(A,Σ, sim) the maximal similarity value between A and an argument
from Σ according to sim, i.e.,

Max(A,Σ, sim) = max
B∈Σ

sim(A,B).

The first family of measures compares the sets of concise refinements of the two ar-
guments under study. Indeed, the similarity between A and B is the average of maximal
similarities (using any existing measure from Definition 45 or 48) between any concise
refinement of A and those of B.

Definition 50 (A-CR Similarity Measures). LetA,B ∈ Arg(L), and let sim be a similarity

measure from Definition 45 or 48. We define A-CR similarity measure2 by

simA
CR(A,B, sim) =

∑
Ai∈CR(A)

Max(Ai, CR(B), sim) + ∑
Bj∈CR(B)

Max(Bj, CR(A), sim)

|CR(A)|+ |CR(B)| .

The value of A-CR similarity measure always belongs to the unit interval.

Proposition 19. LetA,B ∈ Arg(L), simσx a similarity measure where x ∈ {j, d, s, a, ss,
o, ku, cnj} and 0 < σ < 1. Then simA

CR(A,B, simσx) ∈ [0, 1].
2A in A-CR stands for “average”.
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Next we show that the new measure properly resolves the problem of non-conciseness
of the argument A = 〈{p∧ q}, p〉 from our running example. We illustrate that by consid-
ering Extended Jaccard Measure with the parameter σ = 0.5.3

Example 17 (Cont.) It is easy to check that CR(A) = {〈{p}, p〉} and CR(B) = {〈{p}, p〉}.
Then simA

CR(A,B, sim0.5
j ) = 1 while sim0.5

j (A,B) = 0.5.

We define now our second family of similarity measures, which is based on compar-
ison of sets obtained by merging supports of concise refinements of arguments. For an
argument A ∈ Arg(L), we denote that set by

US(A) =
⋃

A′∈CR(A)
Supp(A′).

Definition 51 (U-CR Similarity Measures). Let A,B ∈ Arg(L), 0 < σ < 1, and sx be a

similarity measure from Table 2.1 and sy be a similarity measure from Table 2.1 merge to

the scnj . We define U-CR similarity measure4 by

simU
CR(A,B, sx, sy, σ) = σ · sx(US(A), US(B)) + (1− σ) · sy({Conc(A)}, {Conc(B)}).

Next example illustrates that U-CR also properly resolves the problem of non-conciseness
of the argument A = 〈{p ∧ q}, p〉 from our running example.

Example 17 (Cont.) Let σ = 0.5 and x = y = j. It is easy to check that simU
CR(A,B, sj, sj,

0.5) = 1 while sim0.5
j (A,B) = 0.5.

Let us now consider another more complex example where existing similarity mea-
sures provide inaccurate values while the new ones perform well.

Example 20. Let us consider the following arguments:

• A = 〈{p ∧ q, (p ∨ q)→ t, (p ∨ t)→ r}, t ∧ r〉

• B = 〈{p, p→ t, p→ r}, t ∧ r〉

It is easy to check that CR(A) = {A1, A2, A3, A4, A5} and CR(B) = {B1}, where:

• A1 = 〈{p, p→ t, p→ r}, t ∧ r〉

• A2 = 〈{p, p→ t, t→ r}, t ∧ r〉
3In this section, we slightly relax the notation by simply assuming that p ∈ F . We will make similar

assumptions throughout this section.
4U in U-CR stands for "union".
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• A3 = 〈{q, q → t, t→ r}, t ∧ r〉

• A4 = 〈{p ∨ q, (p ∨ q)→ t, t→ r}, t ∧ r〉

• A5 = 〈{p ∧ q, q → t, p→ r}, t ∧ r〉

• B1 = 〈{p, p→ t, p→ r}, t ∧ r〉

It is worth noticing that the Extended Jaccard Measure could not detect any similarity

between the supports of A and B while their concise arguments A1 and B1 are identical.

Indeed, sj(Supp(A), Supp(B)) = 0 and sim0.5
j (A,B) = 0.5 · 0 + 0.5 · 1 = 0.5 while

simU
CR(A,B, sj, sj, 0.5) = 0.5 · 3

9 + 0.5 · 1 = 2
3 = 0.666 and simA

CR(A,B, sim0.5
j ) =

0.5 · 9
20 + 0.5 · 1 = 29

40 = 0.725.

The following proposition characterizes the arguments which are totally similar ac-
cording to the novel measures. It states that total similarity is obtained exactly in the case
when two arguments have equivalent concise refinements.

Proposition 20. Let A,B ∈ Arg(L), 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku} and y ∈
{j, d, s, a, ss, o, ku, cnj} with the condition that if y = cnj then x = j, otherwise y = x.

Then simA
CR(A,B, simσy ) = simU

CR(A,B, sx, sy, σ) = 1 iff:

• ∀A′ ∈ CR(A), ∃B′ ∈ CR(B) such that Supp(A′) ∼= Supp(B′), Conc(A′) ≡ Conc(B′)
and

• ∀B′ ∈ CR(B), ∃A′ ∈ CR(A) such that Supp(B′) ∼= Supp(A′), Conc(B′) ≡ Conc(A′).

The following result shows the behavior of these new measures regarding the princi-
ples.

Theorem 14. Let 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku} and y ∈ {j, d, s, a, ss, o, ku, cnj}
with the condition that if y = cnj then x = j, otherwise y = x. The following hold:

Satisfaction of the Principles

[Syntax Independence] Let π be a permutation on the set of variables, andA,B,A′,

B′ ∈ Arg(L) such that

– A′ is obtained by replacing each variable p in A with π(p),

– B′ is obtained by replacing each variable p in B with π(p).

Then simA
CR(A,B, simσy ) = simA

CR(A′, B′, simσy ) and

simU
CR(A,B, sx, sy, σ) = simU

CR(A′, B′, sx, sy, σ).
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[Maximality] For everyA ∈ Arg(L), simA
CR(A,A, simσy ) = simU

CR(A,A, sx, sy, σ) =
1.

[Symmetry] For all A,B ∈ Arg(L), simA
CR(A,B, simσy ) = simA

CR(B,A, simσy ) and

simU
CR(A,B, sx, sy, σ) = simU

CR(B,A, sx, sy, σ).

[Substitution] For all A,B,C ∈ Arg(L),

– if simA
CR(A,B, simσy ) = 1, then simA

CR(A,C, simσy ) = simA
CR(B,C, simσy ),

– if simU
CR(A,B, sx, sy, σ) = 1, then simU

CR(A,C, sx, sy, σ) = simU
CR(B,C, sx, sy, σ).

[Minimality] For all A,B ∈ Arg(L), if

– A and B are not equivalent,

–
⋃

φi∈Supp(A)
Var(φi) ∩

⋃
φj∈Supp(B)

Var(φj) = ∅, and

– Var(Conc(A)) ∩ Var(Conc(B)) = ∅,

then simA
CR(A,B, simσy ) = simU

CR(A,B, sx, sy, σ) = 0.

[Triangle Inequality] For all A,B,C ∈ Arg(L), if simσy (A,B) satisfies Triangle

Inequality then

1 + simU
CR(A,C, sx, sy, σ) ≥ simU

CR(A,B, sx, sy, σ) + simU
CR(B,C, sx, sy, σ).

[(Strict) Dominance] For all A,B,C ∈ Arg(L), such that

1. Supp(B) ∼= Supp(C),

2. CNdf (Conc(A)) ∩ CNdf (Conc(C)) ⊆ CNdf (Conc(A)) ∩ CNdf (Conc(B)),

3. CNdf (Conc(B)) \ CNdf (Conc(A)) ⊆ CNdf (Conc(C)) \ CNdf (Conc(A)),

there exists a σ ∈]0, 1[ such that:

– simU
CR(A,B, sj, scnj, σ) > simU

CR(A,C, sj, scnj, σ) and

– simA
CR(A,B, simσcnj) > simA

CR(A,C, simσcnj).

Violation of the Principles

[Triangle Inequality] There exists A,B,C ∈ Arg(L), such that

1 + simA
CR(A,C, simσy ) < simA

CR(A,B, simσy ) + simA
CR(B,C, simσy ).
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[Non-Zero] There exists A,B ∈ Arg(L), such that Co(Supp(A), Supp(B)) 6= ∅
and simA

CR(A,B, simσy ) = simU
CR(A,B, sx, sy, σ) = 0.

[(Strict) Monotony] There exists A,B,C ∈ Arg(L), such that

1. Conc(A) ≡ Conc(B) or Var(Conc(A)) ∩ Var(Conc(C)) = ∅,

2. Co(Supp(A), Supp(C)) ⊆ Co(Supp(A)), Supp(B)),

3. Supp(B) \ Co(Supp(B), Supp(A)) = Co(Supp(B) \ Co(Supp(B), Supp(A)),
Supp(C) \ Co(Supp(C), Supp(A))),

and

– simA
CR(A,B, simσy ) < simA

CR(A,C, simσy ).

– simU
CR(A,B, sx, sy, σ) < simU

CR(A,C, sx, sy, σ).

[(Strict) Dominance] There exists A,B,C ∈ Arg(L), such that

1. Supp(B) ∼= Supp(C),

2. CNdf (Conc(A)) ∩ CNdf (Conc(C)) ⊆ CNdf (Conc(A)) ∩ CNdf (Conc(B)),

3. CNdf (Conc(B)) \ CNdf (Conc(A)) ⊆ CNdf (Conc(C)) \ CNdf (Conc(A)),

and

– simA
CR(A,B, simσx) < simA

CR(A,C, simσx).

– simU
CR(A,B, sx, sx, σ) < simU

CR(A,C, sx, sx, σ).

[Independent Distribution] There exists A,B,A′, B′ ∈ Arg(L), such that

– Var(Conc(A)) ∩ Var(Conc(B)) = Var(Conc(A′)) ∩ Var(Conc(B′)) = ∅,

– Co(Supp(A), Supp(B)) ∼= Co(Supp(A′), Supp(B′)),

– Supp(A) ∪ Supp(B) ∼= Supp(A′) ∪ Supp(B′),

and

– simA
CR(A,B, simσy ) 6= simA

CR(A′, B′, simσy ).

– simU
CR(A,B, sx, sy, σ) 6= simU

CR(A′, B′, sx, sy, σ).

We may observe that simA
CR and simU

CR violate Non-Zero, (Strict) Monotony, Domi-
nance and Independent Distribution for any parameterised measure. The violation is due
to the definition of the principles themselves. Indeed, they are based on the arguments’
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support. Regarding the simA
CR and simU

CR measures, they do not handle arguments’ support
as in the principles. Instead, they compute similarity on the concise refinements of the
arguments (i.e. without the irrelevant information). We also see that using the mixed sim-
ilarity measure, for any arguments under the conditions of Strict Dominance, there exists
a σ such that the measure satisfies the principle. On the other hand, we observe that the
satisfaction of the principles between the two measures (simA

CR and simU
CR) are identical

except for the Triangular Inequality.

Let us display a summary of the satisfactions in the form of a table.

simA
CR(x) simU

CR(x) simA
CR(y) simU

CR(y)
Maximality • • • •
Symmetry • • • •
Substitution • • • •
Syntax Independence • • • •
Minimality • • • •
Non-Zero ◦ ◦ ◦ ◦
Monotony ◦ ◦ ◦ ◦
Strict Monotony ◦ ◦ ◦ ◦
Dominance ◦ ◦ ◦ ◦
Strict Dominance ◦ ◦ ~ ~
Triangular Inequality ◦ � ◦ •
Independent Distribution ◦ ◦ ◦ ◦.

Let x is a syntactic measure and y is the mixed measure, • (resp. ~) means the measure
satisfy the principle for any σ (resp. according to σ), � means the measure satisfies the

principle if its parameterised measure satisfies it and ◦ means the measure doesn’t satisfy
the principle.

Table 2.3: Satisfaction of the principles of similarity measure for non-concise arguments

It may be seen that the conciseness of the arguments has an impact on many principles.
It would be interesting in a future work to analyse and redefine the principles according
to this notion of concise argument.

The following proposition shows that if we apply A-CR or U-CR to any similarity mea-
sure simσx from Definition 45 (respectively sx from Table 2.1) or from Definition 48, then
the two families of measures will coincide with simσx when applied to concise arguments.

Proposition 21. Let A,B ∈ Arg(L) be two concise arguments. Then, for every 0 < σ <

1, x ∈ {j, d, s, a, ss, o, ku} and y ∈ {j, d, s, a, ss, o, ku, cnj} with the condition that if
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y = cnj then x = j, otherwise y = x, it holds

simA
CR(A,B, simσy ) = simU

CR(A,B, sx, sy, σ) = simσy (A,B). (2.1)

Remark. Note that the equations (2.1) might also hold for some A and B that are not

concise. For example, let A = 〈{p ∧ q, t ∧ s}, p ∧ t〉 and B = 〈{p, t ∧ s}, p ∧ s〉. Then

CR(A) = {〈{p, t}, p ∧ t〉} and CR(B) = {〈{p, s}, p ∧ s〉}, so simA
CR(A,B, sim0.5

j ) =
simU

CR(A,B, sj, sj, 0.5) = sim0.5
j (A,B) = 0.25.

The following example shows that A-CR and U-CR may return different results. Indeed,
it is possible for three arguments A, B and C that A is more similar to B than to C

according to one measure, but not according to the other one.

Example 21. Let A = 〈{p, p → q1 ∧ q2}, q1 ∨ q2〉, B = 〈{p, s}, p ∧ s〉 and C = 〈{p →
q1}, p→ q1〉. We have CR(A) = {〈{p, p→ q1}, q1 ∨ q2〉, 〈{p, p→ q2}, q1 ∨ q2〉, 〈{p, p→
q1 ∨ q2}, q1 ∨ q2〉}, CR(B) = {〈{p, s}, p ∧ s〉}, CR(C) = {〈{p → q1}, p → q1〉}. Conse-

quently:

• simA
CR(A,B, sim0.5

j ) = 1
6 > simA

CR(A,C, sim0.5
j ) = 1

8 , but

• simU
CR(A,B, sj, sj, 0.5) = 1

10 < simU
CR(A,C, sj, sj, 0.5) = 1

8 .

The next example shows that none of the two novel measures dominates the other.
Indeed, some pairs of arguments have greater similarity value according to A-CR, and
other pairs have greater similarity value using U-CR.

Example 21 (Cont.) Note that simU
CR(A,B, sj, sj, 0.5) < simA

CR(A,B, sim0.5
j ). Let us

consider A′ = 〈{p∧q}, p∨q〉, B′ = 〈{p, q}, p∧q〉 ∈ Arg(L). simU
CR(A′, B′, sj, sj, 0.5) =

0.5 · 2
3 + 0.5 · 0 = 1

3 = 0.333 and simA
CR(A′, B′, sim0.5

j ) = 0.5 · 3
8 + 0.5 · 0 = 3

16 = 0.1875,
thus simU

CR(A′, B′, sj, sj, 0.5) > simA
CR(A′, B′, sim0.5

j ).

To investigate the notion of similarity and more precisely how to measure it, we used
arguments instantiated in logic. Once we have obtained the degrees of similarity between
arguments, we are left with the question "how to use it in our evaluation methods and

semantics to remove redundancy between the arguments?". The study of the application
of a similarity measure to an evaluation method does not depend on the nature of the
content of the arguments. Therefore, in the next chapter, we will incorporate a similarity
measure as an input to an abstract argumentation framework.
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3.1 Introduction

Two gradual semantics, extending h−Categoriser (Besnard and Hunter [2001]) and using
a binary similarity measure, have been proposed in Amgoud et al. [2018]. They differ in
the way they modify the strengths of attackers on the basis of their similarities. While
those semantics seem reasonable, the approach followed for defining them is not system-
atic as the general rules guiding the definition of a semantics in general, and the way of
dealing with similarity in particular, have not been discussed. The authors proposed some
properties for bridging that gap, but it turns out that both semantics violate some of them.
Moreover, those properties are not sufficient for comparing the two semantics. Hence, the
approach lacks theoretical foundations that describe principles and processes involved in
the definition of semantics that deal with similarity.

This Chapter proposes such theoretical foundations. Rather than focus narrowly on
a particular semantics, we propose a general setting for defining systematically gradual
semantics that consider similarities. The contributions are six-fold:

1. Clarify the process of defining semantics using three functions:

• an adjustment function - n: that updates the strengths of attackers on the basis
of their similarities,

• an aggregation function - g: that computes the strength of the group of attack-
ers,

• an influence function - f : that evaluates the impact of the group on the argu-
ment’s initial weight.

2. Identify rules for handling similarities, i.e, key properties of an adjustment function.

3. Propose principles that a gradual semantics dealing with similarity would satisfy.

4. Provide a broad family of semantics that satisfy them.

5. Analyse the existing adjustment functions, show that they violate some of the pro-
posed properties and propose novel adjustment functions that satisfy the desirable
properties.

6. Extend the h-categoriser semantics with the new adjustment function, and show
that the new semantics are instances of the novel family.
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3.2 Similarity-based Gradual Semantics

Let us start by presenting the extension of the semi-weighted argumentation framework
with a similarity measure.

Definition 52 (SSWAF). A semi-weighted argumentation framework extended by a simi-

larity measure, abbreviated to SSWAF, is a tuple AF = 〈A,w,R, sim〉, whereA ⊆f Arg,

w is a weighting on A, R ⊆ A × A and sim is a similarity measure (a weighting on

A×A).

An important question is how to define gradual semantics that take into account the
adjustment function. We extend the setting that has been proposed by Amgoud and Doder
[2018] for semi-weighted argumentation framework where sim ≡ 01 and in Cayrol and
Lagasquie-Schiex [2005] for simple flat graphs with sim ≡ 0.

Roughly speaking, a gradual semantics dealing with similarity proceeds in a recur-
sive way. For any argument A, if A is not attacked, then its strength is exactly the weight
w(A). Assume now that A is attacked by A1, · · · , Ak. The semantics starts by evaluating
the strength of every attacker Ai, i = 1, · · · , k. Let x1, · · · , xk be numerical values rep-
resenting those strengths. For computing the strength of A, the semantics follows a three

steps process:

1. It adjusts the values x1, · · · , xk according to the similarities between Ai, Aj where
i, j = 1, · · · , k and i 6= j. The goal is to remove redundancy among the attackers,
thus the semantics weakens the attackers. Let x′1, · · · , x′k denote the adjusted values,
x′i being the new strength of Ai.

2. It computes the strength of the group {A1, · · · , Ak} by aggregating the values
x′1, · · · , x′k.

3. It adjusts the initial weight w(A) on the basis of the strength of the group of attack-
ers.

Let us illustrate this process using the running example. Consider the three graphs
G11,G12, and G13 depicted below.

1The notation sim ≡ 0 means all arguments have similarities 0, i.e., they are all completely different.
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Example 3 (Cont.)

B1 B2 B3

A1

(G11)

B1 B3

A2

(G12)

B2 B3

A3

(G13)

B1 B4

A4

(G14)

w ≡ 1, sim(B1, B2) = 1, sim(B1, B3) = sim(B2, B3) = α with 0 < α < 1, sim(B4, Bi) = 0 for any
i = 1, · · · , 3.

Figure 3.1: Running example

According to semantics satisfying the principles described in section 1.2.2 (which do

not use similarity),A1 is strictly weaker thanA2 due toB2 which further weakensA1. It is

also strictly weaker thanA3 due toB1 which decreases further the strength ofA1. Assume

now that B1 and B2 are fully similar, i.e., sim(B1, B2) = 1. Note that B1 is redundant

w.r.t. B2, and thus considering both Str(B1) (strength of B1) and Str(B2) will lead to

an inaccurate evaluation of the argument A. Indeed, A will loose a lot of weight due to

redundant information.

A reasonable gradual semantics would assign strength 1 to each Bi since it is not at-

tacked. ForA1, the semantics would start with the tuple (1, 1, 1), the strengths ofB1, B2, B3,

and adjusts them. Since sim(B1, B2) = 1, the semantics would for example decide to keep

only one of them, say B1. Hence, it adjusts the score of B2 from 1 to 0. Regarding B3,

it keeps only its novel part compared to B1 hence 1 − α. The adjusted values are thus

(1, 0, 1− α). The semantics computes then the strength of the group {B1, B2, B3} using,

for instance, the sum aggregation operator and returns the value 2 − α. Finally, it eval-

uates the impact of the group on the initial weight of A1 using for instance the function

ffrac(x1, x2) = x1
1+x2

, hence the strength of A1 = w(A1)
1+2−α = 1

3−α . Note that if the semantics

ignores the similarities, it assigns the score 1
4 to A1 and thus A1 would be much weaker.

Each step of the process described above can be done in different ways. For instance,
a semantics may adjust differently the strengths of B1, B2 by weakening both arguments,
may aggregate attackers differently, or may use another function than ffrac. In what fol-
lows, we define a gradual semantics in an abstract way using a tuple of three functions,
called evaluation method.

Definition 53 (EM). An evaluation method (EM) is a tuple M = 〈f ,g,n〉 such that:

• f : [0, 1]× Range(g) 2 → [0, 1],
2Range(g) denotes the co-domain of g
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• g : ⋃+∞
k=0[0, 1]k → [0,+∞[,

• n : ⋃+∞
k=0 ([0, 1]× Arg)k → [0, 1]k .

Given the set of attackers of a given argument A in an argumentation framework, the
function n adjusts the strength of each attacker based on its similarities with the other
attackers of A, g computes the strength of the group of attackers, and f evaluates how
the latter influences the initial weight of A. Note that the domains of g and n are unions
because the number of attackers may vary from one argument to another. Note also that
n takes as input two kinds of information: k numerical values and k arguments. Let us
illustrate the need of the set of arguments. Consider the two arguments A3, A4 in Figure
3.1. Recall that sim(B2, B3) = α > 0 and sim(B1, B4) = 0. Since each Bi is not at-
tacked, then its strength is 1. However, the function n would not alter the values of B1

and B4 since the latter are dissimilar, i.e., n(1, 1, B1, B4) = (1, 1) while it modifies those
of B2, B3, i.e., n(1, 1, B2, B3) = (x, y) as there is some redundancy between the two ar-
guments. This means that the same values (here (1, 1)) may be adjusted in different ways
according to the arguments they refer to.

We propose below key properties that should be satisfied by each of the three functions
f ,g,n of an evaluation method. Those properties constrain the range of functions to be
considered, and discard those that may exhibit irrational behaviours.

Definition 54. An evaluation method M = 〈f ,g,n〉 is well-behaved iff the following

conditions hold:

1. (a) f is increasing in the first variable, decreasing in the second one if the first

variable is not equal to 0,

(b) f(x, 0) = x,

(c) f(0, x) = 0,

2. (a) g() = 0,

(b) g(x) = x,

(c) g(x1, · · · , xk) = g(x1, · · · , xk, 0),

(d) g(x1, · · · , xk, y) ≤ g(x1, · · · , xk, z) if y ≤ z,

(e) g is symmetric,

3. (a) n() = (),

(b) n((x,A)) = (x),

(c) g(n((x1, A1), · · · , (xk, Ak))) ≤ g(n((x1, B1), · · · , (xk, Bk))) if

∀i, j ∈ {1, · · · , k}, sim(Ai, Aj) ≥ sim(Bi, Bj),
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(d) If ∃i ∈ {1, · · · , k} s.t. xi > 0 then g(n((x1, A1), · · · , (xk, Ak))) > 0,

(e) g(n((x1, A1), · · · , (xk, Ak))) ≤ g(n((y1, A1), · · · , (yk, Ak))) if

∀i ∈ {1, · · · , k}, xi ≤ yi,

(f) n is symmetric,

(g) n((x1, A1), · · · , (xk+1, Ak+1)) = (n((x1, A1), · · · , (xk, Ak)), xk+1) if

∀i ∈ {1, · · · , k}, sim(Ai, Ak+1) = 0.

We say also that f ,g,n are well-behaved.

Note that the functions f ,g,n are defined without referring to any argumentation
framework. The idea is to describe their general behaviour. The conditions (2c) and (2d)
respectively state that attackers of strength 0 have no impact on their targets, and g is
monotonic in that the greater the individual values, the greater their aggregation. The con-
ditions (3a, · · · , 3g) represent the core principles for dealing with similarities. Namely,
(3b) states that if a group of attackers contains only one element, then the adjusted value
of the latter is equal to the initial one. (3c) states that the greater the similarity between
arguments of a set, the weaker the set, and (3d) ensures that similarities do not inhibit
the attack of a group of arguments. Condition (3e) states that the stronger the individual
attackers, the stronger the group. (3g) is an independence condition. It states that an argu-
ment which is dissimilar to all elements of a group, has no effect on the adjustment of the
values of those elements. Furthermore, the argument keeps its initial value.

From the condition (3c), it follows that similarities lead to a decrease in the strength
of a group of attackers.

Proposition 22. If g and n are well-behaved, then for all x1, · · · , xk ∈ [0, 1], for all

A1, · · · , Ak ∈ Arg, it holds that:

g(x1, · · · , xk) ≥ g(n((x1, A1), · · · , (xk, Ak))).

From the condition (3g), it follows that if the arguments of a set are independent (their
similarities are all equal to 0), then their initial values remain unchanged by n.

Proposition 23. Let x1, · · · , xk ∈ [0, 1] and A1, · · · , Ak ∈ Arg such that for all i, j ∈
{1, · · · , k}, with i 6= j, sim(Ai, Aj) = 0. If n is well-behaved, then n((x1, A1), · · · , (xk, Ak))
= (x1, · · · , xk).

Let us now define formally a gradual semantics based on an evaluation method that
deals with similarity.
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Definition 55 (Gradual Semantics). A gradual semantics S based on an evaluation method

M = 〈f ,g,n〉 is a function assigning to every SSWAF, AF = 〈A,w,R, sim〉 into a

weighting StrS : A → [0, 1] such that for every A ∈ A, StrS(A) =

f

w(A),g
(

n
(

(StrS(B1), B1), · · · , (StrS(Bk), Bk)
)),

where {B1, · · · , Bk} = Att(A).

The above definition shows that evaluating arguments in an SSWAF amounts to solving
a system of equations, one equation per argument. The question of existence of solutions
for such systems arises naturally. Note that existence of solutions also means existence
of a semantics. The following result shows that if the three functions of an evaluation
method are continuous, then a solution exists for every SSWAF.

Theorem 15. If M = 〈f ,g,n〉 is an evaluation method such that f is continuous on the

second variable, g is continuous on each variable, and n is continuous on each numerical

variable, then there exists a semantics S based on M.

The following result goes further by showing that a system of equations has a single
solution for every SSWAF. This is particularly the case when the evaluation method is
well-behaved and satisfies some additional constraints. This result shows there is only
one semantics that is based on a given evaluation method.

Theorem 16. Let M∗ be the set of all well-behaved evaluation methods M = 〈f ,g,n〉
such that:

• lim
x2→x0

f(x1, x2) = f(x1, x0), ∀x0 6= 0.

• lim
x→x0

g(x1, · · · , xk, x) = g(x1, · · · , xk, x0), ∀x0 6= 0.

• n is continuous on each numerical variable.

• λf(x1, λx2) < f(x1, x2), ∀λ ∈ [0, 1[, x1 6= 0.

• g(n(λx1, · · · , λxk, B1, · · · , Bk)) ≥ λg(n(x1, · · · , xk, B1, · · · , Bk)), ∀λ ∈ [0, 1].

For any M ∈M∗, for all gradual semantics S,S′, if S,S′ are based on M, then S ≡ S′.

3.3 Principles of Gradual Semantics dealing with Simi-
larity

So far we have presented a three-step process for defining semantics; at each step a func-
tion that obeys to specific conditions is used. We have seen that none of the three (ad-
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justment, aggregation, influence) functions refers to argumentation frameworks, making
their impact on argument strength in particular and on the behaviour of gradual semantics
in general not clear. This section bridges the gap by proposing principles that gradual se-
mantics should satisfy, and relating them to the various conditions of evaluation methods.

Principles are useful properties for understanding underpinnings of semantics. They
have recently generated a lot of effort (eg. Bonzon et al. [2016]; Amgoud et al. [2017];
Amgoud and Ben-Naim [2018]; Mossakowski and Neuhaus [2018]; Baroni et al. [2019]).
In what follow, we extend those proposed in Amgoud et al. [2017], and that are impacted
by similarity, namely Reinforcement, Monotony and Neutrality. We also propose a novel
one, Sensitivity to Similarity.

The Reinforcement principle concerns strengths of attackers. It states that the stronger
an attacker, the greater its impact on the strength of the argument it is attacking. The
original definition does not take into consideration similarities among attackers, and hence
may lead to counter-intuitive results in presence of redundancies. Assume for instance that
the attacker that is strengthened is redundant with another, in this case it should be ignored
by a semantics.

Principle 1 (Reinforcement). A semantics S satisfies Reinforcement iff for any SSWAF,

AF = 〈A,w,R, sim〉, for all A,B ∈ A, if

• w(A) = w(B),

• Att(A) \ Att(B) = {C}, Att(B) \ Att(A) = {D},

• ∀E ∈ Att(A) ∩ Att(B), sim(C,E) = sim(D,E),

• StrS(C) ≤ StrS(D),

then the following properties hold:

• StrS(A) ≥ StrS(B). (Reinforcement)

• If StrS(A) > 0 and StrS(C) < StrS(D), then StrS(A) > StrS(B). (Strict

Reinforcement)

The Monotony principle concerns the quantity of attackers. Its original definition
states “the more an argument has attackers, the weaker it is”. Hence, an argument A that
is attacked by B and C is weaker than if it is only attacked by B. This result is inaccurate
when B and C are redundant. A should have the same strength in both cases since one
of the attackers should be ignored. The new version of Monotony avoids such inaccurate
evaluations and states “the more an argument has dissimilar attackers, the weaker it is”.
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Principle 2 (Monotony). A semantics S satisfies Monotony iff for any SSWAF, AF =
〈A,w,R, sim〉, for all A,B ∈ A, if

• w(A) = w(B),

• Att(A) ⊆ Att(B),

• If Att(A) 6= ∅, then ∀C ∈ Att(B) \ Att(A), ∀D ∈ Att(A), sim(C,D) = 0,

then the following properties hold:

• StrS(A) ≥ StrS(B). (Monotony)

• If StrS(A) > 0 and ∃C ∈ Att(B) \ Att(A) such that StrS(C) > 0,

then StrS(A) > StrS(B). (Strict Monotony)

Neutrality states that attackers having strength equal to 0 have no impact on their
targets. The new version of the principle ensures that those lifeless attackers are dissimilar
to the other attackers.

Principle 3 (Neutrality). A semantics S satisfies Neutrality iff for any SSWAF, AF =
〈A,w,R, sim〉, for all A,B ∈ A, if

• w(A) = w(B),

• Att(B) = Att(A) ∪ {C} with StrS(C) = 0,

• If Att(A) 6= ∅, then ∀D ∈ Att(A), sim(C,D) = 0,

then StrS(A) = StrS(B).

Sensitivity to similarity states that the greater the similarities between attackers of an
argument, the stronger the argument. Recall that similarities mean existence of redundan-
cies, and the latter should be removed by semantics.

Principle 4 (Sensitivity to Similarity). A semantics S is Sensitive to Similarity iff for any

SSWAF, AF = 〈A,w,R, sim〉, for all A,B ∈ A such that w(A) = w(B), if there exists

a bijective function f : Att(A)→ Att(B) such that:

• ∀C ∈ Att(A), StrS(C) = StrS(f(C)),

• ∀C,D ∈ Att(A), sim(C,D) ≥ sim(f(C), f(D)),

then the following properties hold:

• StrS(A) ≥ StrS(B). (Sensitivity)
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• If StrS(A) > 0 and ∃C,D ∈ Att(A) such that (StrS(C) > 0 or StrS(D) > 0)

and sim(C,D) > sim(f(C), f(D)),

then, StrS(A) > StrS(B). (Strict Sensitivity)

Let us show how the above principles relate to the different conditions of evaluation
methods. The first result states that any semantics that is based on a well-behaved evalua-
tion method satisfies the non-strict versions of the principles.

Theorem 17. Let S be a gradual semantics based on an evaluation method M. If M
is well-behaved, then S satisfies Reinforcement, Monotony, Neutrality and Sensitivity to

Similarity.

In order to guarantee the strict version of Reinforcement, the evaluation method of a
semantics should not only be well-behaved but also satisfy the condition below, which is
a strict version of the constraint (3e) in Definition 54.

g(n((x1, A1), · · · , (xk, Ak))) < g(n((y1, A1), · · · , (yk, Ak)))
if ∀i ∈ {1, · · · , k}, xi ≤ yi and ∃i ∈ {1, · · · , k} s.t. xi < yi. (C1)

Theorem 18. Let S be a gradual semantics based on an evaluation method M. If M is

well-behaved and satisfies (C1), then S satisfies Strict Reinforcement.

Strict Sensitivity to Similarity is satisfied by a semantics when its evaluation method
is well-behaved and enjoys the property (C2).

g(n((x1, A1), · · · , (xk, Ak))) < g(n((x1, B1), · · · , (xk, Bk)))
if ∀i, j ∈ {1, · · · , k}, sim(Ai, Aj) ≥ sim(Bi, Bj) and

∃i, j ∈ {1, · · · , k} s.t. sim(Ai, Aj) > sim(Bi, Bj) and

(xi > 0 or xj > 0). (C2)

Theorem 19. Let S be a gradual semantics based on an evaluation method M. If M is

well-behaved and satisfies (C2), then S is Strictly Sensitive to Similarity.

Strict Monotony is satisfied by a semantics when its evaluation method is well-behaved
and enjoys the property (C3) below.

g(x1, · · · , xk, y) < g(x1, · · · , xk, z) if y < z (C3)

Theorem 20. Let S be a gradual semantics based on an evaluation method M. If M is

well-behaved and satisfies (C3), then S satisfies Strict Monotony.

Remark: It is worth mentioning that the conditions (C1), (C2) and (C3) are not part of
Def. 54 since they are more demanding than their large versions. In the same way, the
large versions of the principles are mandatory while the strict ones are optional and their
suitability depends on the application and the type of arguments (deductive, analogical,
etc).
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3.4 Novel Family of Semantics

We now introduce a broad family of gradual semantics that are able to deal with similarity
between arguments. Its members use evaluation methods from the set M (see Theorem
16). Recall that every evaluation method in this set is well-behaved and satisfies some
additional properties, which guarantee that the evaluation method characterizes a single
gradual semantics.

Definition 56. We define by S∗ the set of all semantics that are based on an evaluation

method from M∗.

From Theorem 17, it follows that any member of S satisfies all the large versions of
the principles.

Theorem 21. Any gradual semantics S ∈ S∗ satisfies Reinforcement, Monotony, Neutral-

ity and Sensitivity to Similarity.

Obviously, if the evaluation method of a semantics S ∈ S∗ satisfies in addition the
three constraints (C1), (C2) and (C3), then the semantics would satisfy the Strict versions
of Reinforcement, Sensitivity to Similarity and Monotony. In a next section (3.6), we
show that the set S∗ is not empty and we discuss some of its instances. But in order to
reach the instance of these semantics, we will first discuss different adjustment functions.

3.5 Adjustment Functions

This section presents examples of adjustment functions. Their core idea is that a modi-
fied value would represent the novelty brought by an attacker to the group of attackers.
This amounts at computing approximately the similarity of the attacker with the group

by aggregating its similarity with every argument of the group. A second central concern
when dealing with similarity is how to distribute the redundancy burden among similar
arguments. Consider the case of a group of two attackers A,B such that sim(A,B) = 1,
the strength of A is equal to 1 and the strength of B is 0.6. The question is: where should

a function n remove redundancy? There are three possible strategies:

• Conjunctive: n removes the redundancy from the weakest argument B.

• Disjunctive: n removes the redundancy from the strongest argument A.

• Compensative: n distributes the burden to both.
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3.5.1 Instances of Adjustment functions

We recall one adjustment function defined in the literature (Amgoud et al. [2018]) and we
present three new adjustment functions, one per strategy.

In Amgoud et al. [2018], the authors proposed two semantics dealing with similar-
ity measures but one of them, i.e. Grouping Weighted h-Categorizer - GHbs, has not an
independent adjustment function. That means this gradual semantics mixed the aggrega-
tion function (g) with the adjustment function (n). That is why we will not compare this
method with ours.

The first adjustment function what has been proposed in Amgoud et al. [2018] (with-
out naming it an adjustment function), is based on the average operator (denoted by avg)
and follows a compensative strategy.

Definition 57 (nrs). Let sim a similarity measure, A1, · · · , Ak ∈ Arg and x1, · · · , xk ∈
[0, 1]. nrs((x1, A1), · · · , (xk, Ak)) =

 avg
xi∈{x1,··· ,xk}\{x1}

(
avg(x1, xi)× (2− sim(A1, Ai))

2

)
, · · · ,

avg
xi∈{x1,··· ,xk}\{xk}

(
avg(xk, xi)× (2− sim(Ak, Ai))

2

).
nrs() = () and nrs((x1, A1)) = (x1) if k = 1.

Example 3 (Cont.) Using the function nrs, we get: nrs((1, B1), (1, B2), (1, B3)) =
(avg(1×1

2 , 1×(2−α)
2 ), avg(1×1

2 , 1×(2−α)
2 ), avg(1×(2−α)

2 , 1×(2−α)
2 )) = (3−α

4 , 3−α
4 , 2−α

2 ). For
α = 0.5, we get (0.625, 0.625,0.75). Note that the function weakens both B1 and B2,
which are identical (sim(B1, B2) = 1).

In what follows, we propose novel (family of) functions that compute the degree of
similarity of an argument with a set of arguments by aggregating the pairwise similarities
using the max operator. They start by rank ordering the initial scores of arguments using a
fixed permutation. The new score of an argument is equal to its old value times its novelty
with respect to the preceding arguments in the permutation.

Definition 58 (Parameterised Function nρmax). Let sim a similarity measure,A1, · · · , Ak ∈
Arg, x1, · · · , xk ∈ [0, 1], and ρ a fixed permutation on the set {1, · · · , k} such that

if xρ(i) = 0 then xρ(i+1) = 0 ∀i < k, or i = k. nρmax() = (), otherwise:

nρmax((x1, A1), · · · , (xk, Ak)) =(
xρ(1),

xρ(2) · (1− max(sim(Aρ(1), Aρ(2)))),
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· · · ,
xρ(k) · (1− max(sim(Aρ(1), Aρ(k)), · · · , sim(Aρ(k−1), Aρ(k))))

)
.

Example 3 (Cont.) Consider the graph G11 in the Figure 3.1. Recall that sim(B1, B2) =
1, sim(B1, B3) = sim(B2, B3) = α, 0 < α < 1, and Att(A1) = {B1, B2, B3}. For
any reasonable semantics S, StrS(B1) = StrS(B2) = StrS(B3) = 1 since they are not
attacked. Let xi = StrS(Bi).

We illustrate nρmax using two permutations. ρmin ranks arguments from the weakest argu-
ment with maximal similarity to the strongest with less similar to other attackers. ρmax

ranks arguments from the strongest with minimal similarity to the weakest with more
similarity. ρmin follows thus a conjunctive strategy while ρmax a disjunctive one. Hence,
ρmin(x1, x2, x3) = (x1, x2, x3) (since B1, B2 are the most similar arguments) and
nρmin

max ((x1, B1), (x2, B2), (x3, B3)) = (1, 0, 1−α). And, ρmax(x1, x2, x3) = (x3, x1, x2) (as
B3 is less similar to the others) and nρmax

max ((x1, B1), (x2, B2), (x3, B3)) = (1−α, 0, 1). For
α = 0.5, we get nρmin

max = (1, 0, 0.5) and nρmax
max = (0.5, 0, 1).

The last adjustment function is based on the gradual semantics Weighted h-Categoriser
in the context of weighted argumentation frameworks (〈A,w,R, σ〉). An important ques-
tion is: "why a gradual semantics can itself play the role of an adjustment function?".
The answer lies in the great analogy between the two: both aim at reducing strengths of
arguments according to a set of other arguments. Another key question is: "on which ar-

gumentation framework is the semantics applied?". Recall that an input of any adjustment
function is a tuple of the form ((x1, A1), · · · , (xk, Ak)), with xi ∈ [0, 1] is given by the
gradual semantics that is used and Ai ∈ A. For every such input, we create a weighted
argumentation framework 〈A′,w′,R′, σ′〉 such that:

• A′ = {A1, · · · , Ak}

• For every Ai ∈ A′, w′(Ai) = xi

• R′ = (A′ ×A′) \ {(Ai, Ai) | i = 1, · · · , n}

• For every (Ai, Aj) ∈ R′, σ′((Ai, Aj)) = sim(Ai, Aj)

The framework contains thus the set of attackers whose strengths should be readjusted, the
initial weight of every argument is its value assigned by the semantics, the attack relation
is symmetric and the weight of every attack is the similarity degree between its target and
its source. Weighted h-categoriser is applied to this framework and the values assigned to
arguments correspond to their readjusted values.
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Definition 59 (nwh). Let sim a similarity measure, A1, · · · , Ak ∈ Arg and x1, · · · , xk ∈
[0, 1]. We define the adjustment function nwh as follows, nwh() = (), otherwise:

nwh((x1, A1), · · · , (xk, Ak)) = (DegSwh
G′ (A1), · · · , DegSwh

G′ (Ak))

where G′ = 〈A′,w′,R′, σ′〉, such that:

• A′ = {A1, · · · , Ak},

• w′(A1) = x1, · · · ,w′(Ak) = xk,

• R′ = {(A1, A2), · · · , (A1, Ak), · · · , (Ak, A1), · · · , (Ak, Ak−1)},

• For every (Ai, Aj) ∈ R′, σ′((Ai, Aj)) = sim(Ai, Aj),

Hence, the strength xi of every attacker Ai will be readjusted to DegSwh
G′ (Ai), where

DegSwh
G′ (Ai) = xi

1+ ∑
j∈{1,··· ,n}\{i}

DegSwh
G′ (Aj)×sim(Aj ,Ai)

.

Let us illustrate the above definition on the graph G11 in the Figure 3.1.

Example 3 (Cont.) We recall the graph G11:

B1

1
B2

1
B3

1

A1

1

sim(B1, B2) = 1

sim(B1, B3) = sim(B2, B3) = α

0 < α < 1

For any reasonable semantics S, StrS(Bi) = w(Bi) since the arguments are not
attacked. Therefore StrS(B1) = StrS(B2) = StrS(B3) = 1. According to the Definition
59, to apply nwh on the attackers of A1, let us create the new graph G′ depicted below:

B1

1

B2

1

B3

11 α

α
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nwh evaluates the arguments of the above graph using Weighted h-Categoriser. It is easy
to check that if α = 0.5 then DegSwh

G′ (B1) = 0.537, DegSwh
G′ (B2) = 0.537. DegSwh

G′ (B3) =
0.651. So, nwh((1, B1), (1, B2), (1, B3)) = (0.537, 0.537, 0.651) meaning that the read-
justed value of B1, B2 and B3 are respectively 0.537, 0.537 and 0.651. Therefore, nwh

follows a compensative strategy.

3.5.2 Study of Adjustment Functions

This section investigate the properties of the three adjustment functions. The first result
shows that they are indeed adjustment functions since their values are taken from the unit
interval [0,1].

Proposition 24. For all A1, · · · , Ak ∈ Arg, for all x1, · · · , xk ∈ [0, 1],

• nrs((x1, A1), · · · , (xk, Ak)) ∈ [0, 1]k,

• for any permutation ρ on the set {1, · · · , k}, nρmax((x1, A1), · · · , (xk, Ak)) ∈ [0, 1]k,

• nwh((x1, A1), · · · , (xk, Ak)) ∈ [0, 1]k.

Let us now check whether the three functions are well-behaved, i.e., they satisfy the
conditions of well-behaved function.

We show that the adjustment function nrs satisfies almost all the constraints from
Def. 54 except (3g). This means that nrs modifies the values of attackers even when they
are all dissimilar. Therefore, nrs is not well-behaved. However according to a specific g,
nrs satisfies (C1) and (C2).

Proposition 25. The following properties hold.

• nrs violates the condition (3g) of Def. 54.

• nrs satisfies the conditions (3a), · · · , (3f) of Def. 54.

• nrs is not well-behaved.

• If g satisfies (C3), then nrs satisfies (C1) and (C2).

We show next that the functions nρmax satisfy the conditions (3a,· · · ,3g) of Definition
54 and those of Theorem 16. However, they violate the conditions (C1) and (C2) because
the max operator considers only the greatest similarity. Hence, increasing small similarity
degrees would not impact the result of nρmax.

Proposition 26. Let f ,g be well-behaved functions and g satisfies the following property:
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let λ ∈ [0, 1], x1, · · · , xk ∈ [0, 1], then g(λx1, · · · , λxk) ≥ λg(x1, · · · , xk).

Let A1, · · · , Ak ∈ Arg, the following properties hold:

• nρmax is well-behaved.

• nρmax is continuous on numerical variables.

• g(nρmax((λx1, A1), · · · , (λxk, Ak))) ≥ λg(nρmax((x1, A1), · · · , (xk, Ak))), ∀λ ∈ [0, 1].

• nρmax violates the conditions (C1) and (C2).

From above, it follows that the functions nρmax are used by evaluation methods of the
set M∗, and thus by the novel family of semantics.

Proposition 27. For all functions f ,g that are well-behaved and satisfy the conditions of

Theorem 16, it holds that 〈f ,g,nρmax〉 ∈M∗.

As for nwh, we show that it is also well-behaved and it can be used in an evaluation
method of the set M∗. Moreover, this adjustment function satisfies (C1) and (C2) (accord-
ing to a specific g).

Proposition 28. Let f ,g be well-behaved functions and g satisfies the following property:

let λ ∈ [0, 1], x1, · · · , xk ∈ [0, 1], then g(λx1, · · · , λxk) ≥ λg(x1, · · · , xk).

Let A1, · · · , Ak ∈ Arg, the following properties hold:

• nwh is well-behaved.

• nwh is continuous on numerical variables.

• g(nwh((λx1, A1), · · · , (λxk, Ak))) ≥ λg(nwh((x1, A1), · · · , (xk, Ak))), ∀λ ∈ [0, 1].

• If g satisfies (C3), then nwh satisfies the conditions (C1) and (C2).

• 〈f ,g,nwh〉 ∈M∗.

We naturally observe that it is possible to have different well-behaved adjustment
functions with different strategies. We are now going to see in more detail their behaviour
with some properties.

The next property states that an adjustment function n can only reduce the value of an
argument.
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Property 5. Let n be an adjustment function. For any SSWAF, AF = 〈A,w,R, sim〉,
for all A1, · · · , Ak ∈ A, for all x1, · · · , xk ∈ [0, 1], if n((x1, A1), · · · , (xk, Ak)) =
(x′1, · · · , x′k), then ∀i ∈ {1, · · · , n}, x′i ≤ xi.

Let us take a look at our functions.

Proposition 29. Only nρmax and nwh respect the Property 5.

• nrs violates Property 5,

• nρmax satisfies Property 5,

• nwh satisfies Property 5.

When an argument having an initial value of 0 and for any similarity with other argu-
ments, this arguments doesn’t impact the readjusted values of the other arguments.

Property 6. Let n be an adjustment function. For any SSWAF, AF = 〈A,w,R, sim〉, for

all A1, · · · , Ak, B ∈ A, for all x1, · · · , xk, y ∈ [0, 1], if y = 0, then

n((x1, A1), · · · , (xk, Ak), (y,B)) = (n((x1, A1), · · · , (xk, Ak)), 0).

Below is the result regarding our functions.

Proposition 30. Only nρmax and nwh respect the Property 6.

• nrs violates Property 6,

• nρmax satisfies Property 6,

• nwh satisfies Property 6.

An adjustment function n cannot readjusts a positive value to 0.

Property 7. Let n be an adjustment function, AF = 〈A,w,R, sim〉 be an SSWAF,

A1, · · · , Ak ∈ A, x1, · · · , xk ∈ [0, 1] and n((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k).

For any i ∈ {1, · · · , n}, if xi > 0, then x′i > 0.

Proposition 31. Only nrs and nwh respect the Property 7.

• nrs satisfies Property 7,

• nρmax violates Property 7,

• nwh satisfies Property 7.
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We propose in a second step to analyse the behaviour of our adjustment functions
combined with an aggregation function widely used in gradual semantics, i.e. gsum. In
this particular case, it may be required that adding an argument that has no strength and
no similarity with the other arguments does not affect the value of the group.

Property 8. Let n an adjustment function, AF = 〈A,w,R, sim〉 be an SSWAF,A1, · · · , Ak,
B ∈ A, x1, · · · , xk, y ∈ [0, 1], if

• ∀i ∈ {1, · · · , k}, sim(Ai, B) = 0,

• y = 0,

Then gsum(n((x1, A1), · · · , (xk, Ak))) = gsum(n((x1, A1), · · · , (xk, Ak), (y,B))).

This means that adding an attacker dissimilar to all other and whose initial value is 0,

cannot increase the sum of readjusted values of the set of attackers.

We know that the adjustment function nrs violates condition 3(g) of Definition 54, i.e.
an argument that is dissimilar to all other arguments, can have an impact on the readjusted
values of the other arguments. Furthermore, when this dissimilar argument has an initial
value of 0 and using the gsum aggregation function, we see that the sum of the adjusted
value increases.

Proposition 32. Only nρmax and nwh respect the Property 8.

• nrs violates Property 8,

• nρmax satisfies Property 8,

• nwh satisfies Property 8.

The use of the gsum aggregation function can also be used to highlight the behaviour
of adjustment functions in the case of a set of totally similar arguments. Intuitively, if
all the attackers of an argument are totally similar, we would like to have a sum of the
adjusted values less than or equal to 1.

Property 9. Let n be an adjustment function, AF = 〈A,w,R, sim〉 be an SSWAF,

A1, · · · , Ak ∈ A, x1, · · · , xk ∈ [0, 1]. If ∀i, j ∈ {1, · · · , n}, sim(Ai, Aj) = 1 then

gsum(n((x1, A1), · · · , (xk, Ak))) ≤ 1.

Proposition 33. Only nρmax respects the Property 9.

• nrs violates Property 9,

• nρmax satisfies Property 9,
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• nwh violates Property 9.

Table 3.1 summarises the various results presented above. We separate properties 8 and 9
which are defined according to the aggregation function gsum. Under this assumption (use
of gsum), properties 8 and 9 are important to respect a correct behaviour. The other proper-
ties are more general and informative (exception for the well-behaved and M∗ properties).

nrs nρmax nwh

n ∈ [0, 1] • • •
n is well-behaved ◦ • •
〈f ,g,n〉 ∈M∗ ◦ • •
n satisfies (C1) • ◦ •
n satisfies (C2) • ◦ •
Property 5 ◦ • •
Property 6 ◦ • •
Property 7 • ◦ •
Property 8 ◦ • •
Property 9 ◦ • ◦

.

.
Where • means True/Satisfied and ◦ means False/Violated.

Table 3.1: Satisfaction of the properties of adjustment functions

Note that, there are 3 parameters that may change the score of g(n((x1, A1), · · · , (xk,
Ak))); these are the strength of arguments (xi), the similarity degrees (sim(Ai, Aj)) and
the number of attackers (k). The impact of these 3 parameters is identical according to
each adjustment function, i.e.:

• Increasing the strength of an argument cannot decrease the sum.

• Increasing a similarity degree cannot increase the sum.

• Increasing the number of attackers cannot decrease the sum.

However, the variation in the increase or decrease of the sum is not the same:

Variation of nrs nρmax nwh

Degrees Constant Constant Decreasing
Similarity Constant Constant Decreasing
Number of attackers Constant Constant Decreasing

Table 3.2: Variation of the sum of the adjusted values according to a parameter

To put it clearly, when we increase one of the parameters (i.e. degree, similarity, or
number of attackers), we observe a constant variation for nrs or nρmax while we observe a
decreasing variation for nwh.
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Example 3 (Cont.) Let us illustrate constant and decreasing variation, with nrs and nwh.
Recall that we have three arguments B1, B2, B3 ∈ Arg such that sim(B1, B2) = 1,
sim(B1, B3) = sim(B2, B3) = α, and Str(B1) = Str(B2) = Str(B3) = 1.

If we vary the value of α from 0 to 1 with an increase of 0.1, we obtain these results:

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
gsum(nrs) 2.5 2.4 2.3 2.2 2.1 2 1.9 1.8 1.7
gsum(nwh) 2.236 2.082 1.963 1.868 1.791 1.725 1.668 1.619 1.574

α 0.9 1
gsum(nrs) 1.6 1.5
gsum(nwh) 1.535 1.5

Table 3.3: Variation of the sum of the adjusted values according to similarities

To have a better visualisation of these results, below is their representation in graphical
form. We call xi the readjusted value of Str(Bi). Let us see the variation of the sum of xi
with respect to the similarities α for gsum(nrs((Str(B1), B1), (Str(B2), B2), (Str(B3), B3))):

Let us see the variation of the sum of xi with respect to the similarities α for
gsum(nwh((Str(B1), B1), (Str(B2), B2), (Str(B3), B3))):
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To conclude this section, thanks to the different analyses, we can observe that:

• nrs is a compensative adjustment function. It violates the properties 8 and 9 which
are desirable. It violates the property 5 which is more informative than desirable.
Then it violates property 6 which may be considered as a correct behaviour if we
want to consider both arguments with zero strength and those with non-zero value.
Moreover, it is not well-behaved due to the violation of condition (3g) of Definition
54. But according to the function g, as for gsum, this change has no negative effect
on the aggregation of adjusted values. Finally, nrs has an undesirable behaviour
with the aggregation function gsum but it has a great sensitivity to the variation of
strength, similarity and takes into account arguments with a strength of 0.

• nρmax is a family of conjunctive and disjunctive adjustment functions. They satisfy
the property 6 which means that if an argument has a strength of 0 then its similar-
ity has no impact on the other arguments.In addition, they violate conditions (C1)
and (C2), which allows a more accurate adjustment. Therefore, the family of func-
tions nρmax is well-behaved, it satisfies all the essential properties but lacks a bit of
precision.

• nwh is a compensative adjustment function. It violates the property 9 which is a
desirable property even if it is defined according to the specific aggregation function
gsum and it satisfies the debatable property 6. Furthermore, it is interesting to note
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that the variation of the sum of adjusted values for nwh is decreasing, i.e. it makes a
non-linear adjustment, while for nrs and nρmax they make a linear adjustment.

After studying all these functions, we are able to instantiate our evaluation methods to
obtain gradual semantics dealing with similarity.

3.6 Instances of Semantics

In this last section of this chapter, we present instances of the broad family S∗ (Def.
56) that extend h-categoriser (Besnard and Hunter [2001]). They use the well-behaved
functions ffrac and gsum recalled below and the previously defined adjustment functions
nrs, nρmax and nwh.

ffrac(x1, x2) = x1

1 + x2
gsum(x1, · · · , xk) =

k∑
i=1

xi

Definition 60. Semantics Sn based on the evaluation method 〈ffrac,gsum,n〉 is a function

transforming any SSWAF, AF = 〈A,w,R, sim〉, into a function Strn from A to [0, 1] s.t.

for any A ∈ A, Strn(A) =

w(A)

1 +
k∑
i=1

(
n
(

(Strn(B1), B1), · · · , (Strn(Bk), Bk)
))

where Att(A) = {B1, · · · , Bk}. If Att(A) = ∅, then
k∑
i=1

(
n
(

(Strn(B1), B1), · · · , (Strn(Bk), Bk)
)) = 0.

Example 3 (Cont.) Let us consider the adjustment functions nρmax, nrs and nwh.

Strnρmin
max (A1) = 1

1 + 1 + 0 + 1− α = 1
3− α

Strnρmax
max (A1) = 1

1 + 1 + 1− α + 0 = 1
3− α

Strnrs(A1) = 1
1 + 3−α

4 + 3−α
4 + 2−α

2
= 1

3.5− α

Strnwh(A1) = 1
1 + x1 + x2 + x3
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Where xi is the readjusted value of Strnwh(Bi) and such that:


x1 = x2

x3 = 2x2
1 + 2x1 − 1

α = −x2
1−x1+1

x1(2x2
1+2x1−1)

Then if α = 0.5:

• Strnρmin
max (A1) = 1

2.5 = 0.4

• Strnρmax
max (A1) = 1

2.5 = 0.4

• Strnrs(A1) = 1
3 = 0.333

• Strnwh(A1) = 40
109 = 0.367 with x1 = x2 = 0.537 and x3 = 0.651.

Note that Snρmax covers a range of semantics using different permutations. We show
that those semantics are all instances of S∗. They thus satisfy all the (large versions of
the) principles. In addition, they satisfy strict monotony, but violate the strict versions of
Reinforcement and sensitivity to similarity due to the max operator.

Theorem 22. For any ρ, it holds that Snρmax ∈ S∗. Furthermore, Snρmax satisfies Reinforce-

ment, (Strict) Monotony, Neutrality and Sensitivity to Similarity.

The semantics Snrs satisfies all the principles except Neutrality. Note that this seman-
tics extends h-categoriser which satisfies Neutrality in settings where sim ≡ 0.

Theorem 23. The semantics Snrs satisfies all the principles except Neutrality. Further-

more, Snrs /∈ S∗.

The semantics Snwh satisfies all the principles.

Theorem 24. The semantics Snwh satisfies all the principles. Furthermore, Snwh ∈ S∗.

Note that, when the arguments are all distinct (i.e., similarities are equal to 0), the
above semantics assign the same values to all arguments, and coincide with the semi-
weighted h-categoriser semantics (denoted by Strh) that assigns for any 〈A,w,R, sim〉,
to every argument A ∈ A,

Strh(A) = w(A)
1 + ∑

Bi∈Att(A)
Strh(Bi)

(3.1)
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Theorem 25. For any SSWAF, AF = 〈A,w,R, sim〉 and any permutation ρ, if sim ≡ 0,

then

Strnρmax ≡ Strnrs ≡ Strnwh ≡ Strh.

This shows that these semantics extend semi-weighted h-categoriser by considering
similarity degrees of attackers.
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4.1 Contributions

IN this thesis, I studied the notion of similarity in argumentation. I tackled two research
questions:

• how to measure similarity between two arguments, and

• how to define semantics, that are able to deal with similarity.

Regarding the first question, I focused on logical arguments, and proposed proper-
ties that a reasonable similarity measure should satisfy in this context of arguments.

Then, I extended in several ways well-known similarity measure, from the literature. The
measure are syntax-dependent, thus I used various notions (like concise arguments, re-
finements of arguments) for solving some tricky issues. This part of the thesis is novel,
and there is almost no work in the literature neither on principles for measure, nor on
the definition of measure. Two notable exceptions are the work by Amgoud et al. [2014]
where the authors studied equivalence of logical argument the latter corresponds to full
similarity in our setting. The second measure was proposed by Budàn et al. [2015] and it
is based on a simple comparison of features associated to arguments.

90
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The second part of the thesis is also novel in the literature. Indeed, I proposed the first
principles for semantics dealing with similarity. I also proposed a general setting (using
three functions) for defining in a systematic way gradual semantics. Each function should
obey to certain rules ensuring reasonable behavior in dealing with similarity. I investigated
different readjustment function, and proposed a broad family of gradual semantics that
encompasses almost all the existing gradual semantics.

4.2 Perspectives

This work may be extended in different directions, and both argumentation settings: log-
ical or abstract. Let us start with the case of logical argumentation. Firstly, a possible
research direction consists of getting rid of the syntax-dependency of our similarity mea-
sures. For instance, one may want to capture the similarity between the supports for the
following arguments 〈{p}, p〉 and 〈{p ∧ q}, p ∧ q〉. Indeed, the formulas p and p ∧ q have
a common content, p. Therefore, similarity measures applied to supports should be im-
proved in terms of accuracy. A solution to this problem might be, like concise arguments,
to decompose each argument into a minimal structure. A solution might be the use of
causal formulas, i.e., the formulas in the support of an argument are clauses.
As far as concise arguments are concerned, we can observe that similarity measures deal-
ing with non-concise arguments do not respect support-based principles (since a refined
argument may modify the support). Therefore, new principles that are based on concise
arguments will have to be defined.
Finally, it would be interesting to study similarity under more complex logics such as first
order logics, or modal logic.

Let us now look at the different perspectives for abstract argumentation dealing with
a similarity measure. A first line of research is to study fair adjustment functions, which
remove the exact amount of redundancy. Furthermore, the combination of influence and
aggregation functions (f and g) may also be studied further with adjustment functions
n. For example, we have seen that gsum and nwh do not combine so well. To get a more
complete evaluation method, we can extend it by adding a function h which allows to
compute the strength of an attack (with the strength of an argument and the weight of a
relation). Then, another characterisation including all functions of an evaluation method
must be done to ensure the definition of one and only one gradual semantics.
As we have seen in the state of the art, there are different types of semantics (extensions,
gradual, ranking). It would also be interesting to study how ranking and extension seman-
tics would deal with similarity.
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We plan to apply the new semantics in applications such as analogical reasoning and ar-
gument evaluation in debate platforms.
Finally, in this thesis we have studied a binary similarity measure (between pairs of argu-
ments). It is easier (from a human’s point of view) to know how similar two arguments are
to each other than to know the similarity between a set of arguments. However, it is not
possible to deduce the exact degree of similarity between a set of arguments from a binary
measure set. Therefore, for greater accuracy and to deal with similarity in its generality,
it will be necessary to investigate n-ary similarity measures.



Chapter 5
Appendix

5.1 Proofs of Chapter 2

5.1.1 Proofs of section 2.1: Background on Logic

Proof. [Property 1] Assume that Co(Φ,Ψ) = Φ and Co(Ψ,Φ) = Ψ. We can deduce that:

• Co(Φ,Ψ) = Φ implies ∀φ ∈ Φ, ∃ψ ∈ Ψ such that φ ≡ ψ,

• Co(Ψ,Φ) = Ψ implies ∀ψ ∈ Ψ, ∃φ ∈ Φ such that ψ ≡ φ.

Therefore, Φ ∼= Ψ according to the definition 34. The other way follows also trivially
from Definition 34.

Proof. [Property 2] From Definition 36, an argument 〈Φ, φ〉 is trivial iff Φ = ∅ and
φ ≡ >. From Definition 39, two arguments are equivalent iff their support and conclusion
are logically equivalent. Because any empty set are equivalent and > ≡ >, therefore any
pair of trivial argument are equivalent.

Proof. [Property 3] Let A,B ∈ Arg(L). We distinguish two cases: i) Supp(A) = ∅
or Supp(B) = ∅. By definition, Co(Supp(A), Supp(B)) = Co(Supp(B), Supp(A)) =
∅. Hence, |Co(Supp(A), Supp(B))| = |Co(Supp(B), Supp(A))| = 0. ii) Supp(A) 6= ∅
and Supp(B) 6= ∅. If Co(Supp(A), Supp(B)) = ∅, then Co(Supp(B), Supp(A)) = ∅.
Assume now that Co(Supp(A), Supp(B)) 6= ∅. Assume that |Co(Supp(A), Supp(B))| <
|Co(Supp(B), Supp(A))|. Thus, there exists at least two formulas φ, ψ ∈ Co(Supp(B),
Supp(A)) such that φ ≡ λ and ψ ≡ λ, with λ ∈ Supp(A). This means that φ ≡ ψ. This
contradicts the fact that Supp(B) is minimal for set inclusion.

Proof. [Property 4] LetA,B ∈ Arg(L) be such that Supp(A) ∼= Supp(B). Property 1 im-
plies Co(Supp(A), Supp(B)) = Supp(A) and Co(Supp(B), Supp(A)) = Supp(B). Prop-
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erty 3 implies that |Co(Supp(A), Supp(B))| = |Co(Supp(B), Supp(A))|. Hence, |Supp(A)|
= |Supp(B)|.

5.1.2 Proofs of section 2.2.2: Compatibility and Dependency Results

Proof. [Proposition 2] Follows from Theorem 13.

Proof. [Proposition 3] Let sim be a similarity measure which satisfies Maximality, Sym-
metry, Strict Monotony, Dominance, and Strict Dominance. Let A,B,C ∈ Arg(L) such
that sim(A,B) = 1. From Theorem 8, it holds that Supp(A) ∼= Supp(B) and Conc(A) ≡
Conc(B). By applying Dominance twice, we get sim(C,A) ≥ sim(C,B) and sim(C,B) ≥
sim(C,A). Hence, sim(C,A) = sim(C,B). Symmetry implies sim(C,A) = sim(A,C) =
sim(C,B) = sim(B,C).

Proof. [Theorem 7] Let sim be a similarity measure which satisfies Maximality and
Monotony. Let A,B ∈ Arg(L) be such that A ≈ B. Let us show that sim(A,B) = 1.
From Definition 39, Supp(A) ∼= Supp(B) and Conc(A) ≡ Conc(B). From Monotony, it
follows that sim(A,A) ≥ sim(A,B) and sim(A,B) ≥ sim(A,A). Therefore, sim(A,A) =
sim(A,B). From Maximality, sim(A,A) = 1, so sim(A,B) = 1.

Proof. [Theorem 8] Let sim be a similarity measure which satisfies Maximality, Strict
Monotony and Strict Dominance. Let A,B ∈ Arg(L) be such that sim(A,B) = 1. Let us
show that A ≈ B. There are two cases:

i) A and B are trivial: From Property 2, it holds that A ≈ B.

ii) A is non-trivial: Assume thatA 6≈ B. By definition, Supp(A) 6∼= Supp(B) or Conc(A) 6≡
Conc(B).

Consider the case where Supp(A) 6∼= Supp(B). Clearly,

• Conc(A) ≡ Conc(A),

• Co(Supp(A), Supp(B)) ⊂ Co(Supp(A), Supp(A)) = Supp(A) (this inclusion
is strict since Supp(A) 6= ∅ and Supp(A) 6∼= Supp(B)),

• Supp(A) \ Co(Supp(A), Supp(A)) = Co(Supp(A) \ Co(Supp(A), Supp(A)),
Supp(B) \ Co(Supp(B), Supp(A))),

By applying Strict Monotony, we get sim(A,A) > sim(A,B). From Maximality
sim(A,A)
= 1, so sim(A,B) < 1. This shows that Supp(A) ∼= Supp(B).

Consider now the case where Supp(A) ∼= Supp(B) and Conc(A) 6≡ Conc(B). The
conditions of Strict Dominance are verified, indeed:
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• Supp(A) ∼= Supp(B),

• CNdf (Conc(A))∩CNdf (Conc(B)) ⊂ CNdf (Conc(A))∩CNdf (Conc(A)) = CNdf (Conc(A)).
The implication is strict since Conc(A) 6≡ Conc(B).

• CNdf (Conc(A)) \ CNdf (Conc(A)) ⊂ CNdf (Conc(B)) \ CNdf (Conc(A)).

• Co(Supp(A), Supp(A)) = Supp(A). Since a is non trivial, then Supp(A) 6= ∅.

Strict Dominance ensures sim(A,A) > sim(A,B) while Maximality ensures
sim(A,A) = 1, so sim(A,B) < 1.

Note that the case where B is non-trivial is similar to the previous case.

Proof. [Proposition 4] Let sim be a similarity measure which satisfies Minimality, and
Substitution. Let A,B,C ∈ Arg(L) such that A is non-trivial, B is trivial and C is trivial
and Var(Conc(A)) ∩ Var(Conc(C)) = ∅. Moreover, from Definition 36, Supp(A) 6= ∅,
Supp(C) = ∅ and because Var(Conc(A)) ∩ Var(Conc(C)) = ∅, therefore:

• A and C are not equivalent,

•
⋃

φi∈Supp(A)
Var(φi) ∩

⋃
φj∈Supp(C)

Var(φj) = ∅ and

• Var(Conc(A)) ∩ Var(Conc(C)) = ∅.

Hence, from Minimality sim(A,C) = 0. From Property 2,B ≈ C, then from Substitution
sim(A,B) = sim(A,C) = 0.

Proof. [Proposition 5] Let sim be a similarity measure which satisfies Strict Monotony
or Non-Zero. Let A,B ∈ Arg(L) such that B @ A and B is non-trivial.
Start by the case of Strict Monotony.
Let C ∈ Arg(L) such that :

• Supp(C) = {φ ∈ L | ∀ψ ∈ Supp(A), φ 6≡ ψ}.

• Var(Conc(C)) ∩ Var(Conc(A)) = ∅.

Therefore the 3 conditions of the principle Monotony are satisfied. Additionally, given
that B @ A and B is non-trivial, then there exists an equivalent formula between the sup-
port of A and B. While there is no equivalent formula between the support of A and C.
Hence, the inclusion in condition 2 is strict, i.e. we can use the result of Strict Monotony.
Finally, given that from Definition 40, sim(A,C) ≥ 0. Therefore, sim(A,B) > 0.

Let see now the case of Non-Zero.
From the Definition 37, and the fact that B @ A, we have Supp(B) ⊆ Supp(A). Given
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thatB is non-trivial then ∃φ ∈ Supp(B) such that φ ∈ Supp(A). Consequently, Co(Supp(A),
Supp(B)) 6= ∅, and using the principle Non-Zero we obtain sim(A,B) > 0.

Proof. [Proposition 6] Let sim be a similarity measure which satisfies Monotony. Let
A,B,C ∈ Arg(L) be such that:

• Var(Conc(A)) ∩ Var(Conc(C)) = ∅, and

• C @ B @ A.

It can be checked below that the conditions of Monotony are guaranteed. Indeed,

• Var(Conc(A)) ∩ Var(Conc(C)) = ∅,

• Co(Supp(A), Supp(C)) = Supp(C) ⊆ Co(Supp(A), Supp(B)) = Supp(B),

• Supp(B) \ Co(Supp(B), Supp(A)) = Co(Supp(B) \ Co(Supp(B), Supp(A)),
Supp(C) \ Co(Supp(C), Supp(A))) = ∅.

The second and third conditions are satisfied because Supp(C) ⊆ Supp(A), Supp(C) ⊆
Supp(B) and Supp(B) ⊆ Supp(A).
Therefore, Monotony ensures sim(A,B) ≥ sim(A,C).

Proof. [Proposition 7] Let sim be a similarity measure which satisfies Strict Dominance.
Let A,B,C ∈ Arg(L) be such that:

1. A,B,C are non trivial,

2. Supp(A) ∼= Supp(B) ∼= Supp(C),

3. Conc(A) ` Conc(B) ` Conc(C),

4. Conc(C) 6` Conc(B), Conc(B) 6` Conc(A),

The conditions of Strict Dominance are guaranteed, indeed:

• Co(Supp(A), Supp(B)) 6= ∅ (from condition 1),

• Supp(B) ∼= Supp(C) (from condition 2),

• CNdf (Conc(A)) ∩ CNdf (Conc(C)) ⊂ CNdf (Conc(A)) ∩ CNdf (Conc(B)) (from condi-
tions 3, 4),

• CNdf (Conc(B)) \ CNdf (Conc(A)) = CNdf (Conc(C)) \ CNdf (Conc(A)) = ∅ (from
condition 3).
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Hence, Strict Dominance leads to sim(A,B) > sim(A,C).

Proof. [Proposition 8] Let sim be a similarity measure which satisfies Maximality, Strict
Monotony, and Strict Dominance. From Theorem 8, it follows that Supp(A) ∼= Supp(B).
Hence, Supp(A)∪ Supp(B) ∼= Supp(A). Furthermore, by definition (36) of an argument,
Supp(A) is consistent. So is for Supp(A) ∪ Supp(B).

5.1.3 Proofs of section 2.3: Concise Arguments

Proof. [Proposition 9] Let A = 〈{φ1, . . . , φn}, φ〉, B = 〈{φ′1, . . . , φ′n}, φ〉 ∈ Arg(L)
such that B ∈ Ref(A). Assume that there exist two different permutations ρ1, ρ2 of the
set {1, . . . , n} such that ∀k ∈ {1, . . . , n}, φk ` φ′ρ1(k) and φk ` φ′ρ2(k). Let ` ∈ {1, . . . , n}
be a number such that ρ1(`) 6= ρ2(`). Then φ` ` φ′ρ1(`) and φ` ` φ′ρ2(`). Let i 6= ` be the
number such that ρ1(i) = ρ2(`). Then we have both φi ` φ′ρ1(i) and φ` ` φ′ρ1(i). Thus,
Supp(A) \ {φ`, φi} ` ψ for every ψ ∈ {φ′ρ1(k) | k 6= i, `} and φ` ` φ′ρ1(`) ∧ φ′ρ1(i). Then
Supp(A) \ {φi} ` ψ for every ψ ∈ Supp(B). Consequently, since Supp(B) ` φ, we have
Supp(A) \ {φi} ` φ as well. This contradicts the Minimality condition from Definition
36.

Proof. [Proposition 10] Let A ∈ Arg(L) be a trivial argument. Therefore Supp(A) = ∅
and Conc(A) ≡ >. In that case A ∈ Ref(A) obviously holds (we can say that all the
elements of Supp(A) contain only dependent variables). Suppose that there isB 6= A such
that B ∈ Ref(A). Then Conc(B) = Conc(A) by Definition 42, so Supp(B) 6= Supp(A).
Thus, |Supp(B)| 6= |Supp(A)|, so there is no bijection between the elements of Supp(B)
and Supp(A). Consequently, a permutation ρ from the second condition of Definition 42
doesn’t exist, so B /∈ Ref(A).

Proof. [Proposition 11]

• Let A = 〈{φ1, . . . , φn}, φ〉 ∈ Arg(L). For every formula φi ∈ Supp(A) there exists
an equivalent formula φ′i ≡ φi such that it contains only dependent literals, i.e.,
Lit(φ′i) = DepLit(φi). Let us consider B = 〈{φ′1, . . . , φ′n}, φ〉. For the permuta-
tion ρ = Id (i.e., ρ(i) = i for all i ∈ {1, . . . , n}), we have that ∀k ∈ {1, . . . , n},
φk ` φ′ρ(k) and Lit(φ′ρ(k)) ⊆ DepLit(φk). Moreover, Conc(B) = Conc(A), so by
Definition 42 B is a refinement of A.

• If Lit(φ) = DepLit(φ) for all φ ∈ Supp(A), then we can prove that A ∈ Ref(A)
in the same way as we proved that B ∈ Ref(A) in the proof of the first part of
the Proposition. Conversely, suppose that A ∈ Ref(A). Then the unique (by Propo-
sition 9) permutation ρ from Definition 36 must be identity, i.e., ρ(i) = i for all
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i ∈ {1, . . . , n}. From the second condition of Definition 36 it follows that Defini-
tion Lit(φi) ⊆ DepLit(φi) for all i ∈ {1, . . . , n}.

Proof. [Proposition 12]

• Let A = 〈{φ1, . . . , φn}, φ〉 ∈ Arg(L) and let B = 〈{φ′1, . . . , φ′n}, φ〉 be a refine-
ment of A. Then there exists a permutation ρ of the set {1, . . . , n} such that ∀k ∈
{1, . . . , n}, φk ` φ′ρ(k) and Lit(φ′ρ(k)) ⊆ DepLit(φk). If B = 〈{φ′′1, . . . , φ′′n}, φ〉 is
a refinement of B, then there exists a permutation σ of {1, . . . , n} such that ∀k ∈
{1, . . . , n}, φ′k ` φ′′σ(k) and Lit(φ′′ρ(k)) ⊆ DepLit(φ′k). In order to prove that C is a
refinement of A, we will consider the permutation σ ◦ ρ. For every k ∈ {1, . . . , n},
we have both φk ` φ′ρ(k) and φ′ρ(k) ` φ′′σ((ρ(k)), together they imply φk ` φ′′σ((ρ(k)).
Moreover, from Lit(φ′ρ(k)) ⊆ DepLit(φk) and Lit(φ′′σ((ρ(k))) ⊆ DepLit(φ′ρ(k)), us-
ing DepLit(φ′ρ(k)) ⊆ Lit(φ′ρ(k)) we obtain Lit(φ′′σ((ρ(k))) ⊆ DepLit(φk). Therefore
C ∈ Ref(A).

• Let A = 〈{φ1, . . . , φn}, φ〉 ∈ Arg(L) and let A ≈ B. Then B is of the form
〈{ψ1, . . . , ψn}, φ〉 such that φi ≡ ψi, for each i ∈ {1, . . . , n}. Let C =
〈{φ′1, . . . , φ′n}, φ〉 ∈ Ref(A). Then there exists a permutation ρ of the set {1, . . . , n}
such that ∀k ∈ {1, . . . , n}, φk ` φ′ρ(k) and Lit(φ′ρ(k)) ⊆ DepLit(φk). Let us
consider arbitrary i ∈ {1, . . . , n}. Since φi ≡ ψi, we have φi ` φ′ρ(i). More-
over, DepLit(φi) = DepLit(ψi), so Lit(φ′ρ(i)) ⊆ DepLit(ψi). By Definition 42,
C ∈ Ref(B). Therefore Ref(A) ⊆ Ref(B). In the same way we can prove that
Ref(B) ⊆ Ref(A). Consequently, Ref(A) = Ref(B).

Proof. [Proposition 13]

1. Let B ∈ CR(A). Then B ∈ Ref(B) by Definition 44. Moreover, B is concise, so if
C ∈ Ref(B), then C ≈ B by Definition 43.

2. Let A = 〈{φ1, . . . , φn}, φ〉 ∈ Arg(L), and let LitA = ⋃
i∈{1,...,n} Lit(φi). Since

LitA is finite, there are finitely many valuations from LitA to {true, false}, so
by Completeness theorem for propositional logic, there are finitely many classes of
equivalence≡ on LitA. By Proposition 11, Ref(A) 6= ∅. LetB1 = 〈{φ′1, . . . , φ′n}, φ〉
∈ Ref(A). If B1 is concise, then B1 ∈ CR(A), so CR(A) 6= ∅. Otherwise, there
exists B2 ∈ Ref(B1) such that B2 6≈ B1. By Proposition 12, B2 ∈ Ref(A). There-
fore, if B2 is concise, then B2 ∈ CR(A), so CR(A) 6= ∅. Otherwise, there exists
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B3 ∈ Ref(B2) such that B3 6≈ B2. This process must be finite, since for each n
we have that all formulas of Bn are built form the elements of LitA, and there are
finitely many classes of equivalence≡ on LitA. This means that there is k such that
Bk ∈ Ref(Bk−1) and for every C ∈ Ref(Bk), C ≈ Bk. Therefore Bk is concise
and Bk ∈ Ref(A) (Proposition 12), so Bk ∈ CR(A). Thus CR(A) 6= ∅.

3. By Proposition 11, there exists B ∈ CR(A). If A is non-trivial, then Supp(B) 6=
∅. Let B = 〈{φ1, . . . , φn}, φ〉. For every positive integer n, let us denote by φ(n)

1

the formula φ1 ∧ · · · ∧ φ1, where the conjunction ∧ is applied n times. Note that
the formulas φ(n)

1 and φ1 have the same sets of literals. Furthermore, let B(n) =
〈{φ(n)

1 , φ2 . . . , φn}, φ〉. Then for every nwe haveB(n) ≈ B. Then from conciseness
of B we can conclude that B(n) is also concise. Moreover, from B ∈ Ref(A) we
obtain B(n) ∈ Ref(A), for every n. Therefore {B(n) | n = 1, 2, . . . } ⊆ CR(A), so
CR(A) is infinite.

4. Let A ≈ B. From Proposition 12 we obtain Ref(A) = Ref(B). Consequently, the
set of concise arguments form Ref(A) coincide with the set of concise arguments
form Ref(B), i.e., CR(A) = CR(B).

5. LetB ∈ Ref(A). From Proposition 12 we obtain Ref(B) ⊆ Ref(A). Consequently,
each concise argument from Ref(B) is also a concise argument from Ref(A), i.e.,
CR(B) ⊆ CR(A).

Proof. [Proposition 14] Let B ∈ CR(A). Let φ ∈ Supp(B) and let ψ ∈ L be such
that φ ` ψ and ψ 6≡ φ. If C = 〈(Supp(B) \ {φ}) ∪ {ψ}, Conc(B)〉 ∈ Arg(L), and if
Lit(ψ) \ Lit(φ) = ∅, then Lit(ψ) ⊆ Lit(φ). Note that Lit(φ) = DepLit(φ), since
B ∈ CR(A). Then C would be a refinement of B such that C 6≈ B, which contradicts the
assumption that B is concise.

5.1.4 Proofs of section 2.4.1: Syntactic Similarity Measures

Proof. [Proposition 15] Follows from the definition of the measures (table 2.1). The size
of each of the compared sets is 1.

Proof. [Proposition 16] Follows from Proposition 15.

Proof. [Proposition 17] Let A,B ∈ Arg(L), x ∈ {j, d, s, a, ss, o, ku}, and 0 < σ < 1.
sx(Supp(A), Supp(B)) ∈ [0, 1] and sx(Conc(A), Conc(B)) ∈ [0, 1]. Hence, simσx(A,B) ∈
[0, 1].
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Proof. [Theorem 9] For all the principles except Triangle Inequality and Independent
Distribution, we prove the result for Extended Jaccard Measure. The same reasoning holds
for the others. Let 0 < σ < 1.

Maximality: Let A ∈ Arg(L). There are two cases:

i) A is trivial, hence Supp(A) = ∅. By definition of Extended Jaccard Measure,
sj(Supp(A), Supp(A)) = 1.

ii) A is non-trivial. Hence, Co(Supp(A), Supp(A)) = Supp(A). Thus, sj(Supp(A),
Supp(A)) = 1. Furthermore, from Proposition 15, sj(Conc(A), Conc(A)) = 1.
Hence, simσj (A,A) = 1.

Symmetry: Let A,B ∈ Arg(L). We show that sσj (A,B) = sσj (B,A). There are three
cases:

i) A and B are both trivial. Then, Supp(A) = Supp(B) = ∅ and Conc(A) ≡ Conc(B).
Hence, by definition of Extended Measure, sj(Supp(A), Supp(B)) = 1 and from
Proposition 15, sj(Conc(A), Conc(B)) = 1. Hence, simσj (A,B) = simσj (B,A) =
1.

ii) A is trivial and B is non-trivial. Then, Supp(A) = ∅ and Conc(A) 6≡ Conc(B). By
definition, sj(Supp(A), Supp(B)) = sj(Supp(B), Supp(A)) = 0 and from Propo-
sition 15, sj({Conc(A)}, {Conc(B)}) = 0. So, simσj (A,B) = simσj (B,A) = 0.

iii) Both A and B are not trivial, i.e., Supp(A) 6= ∅ and Supp(B) 6= ∅. From Property 3,
|Co(Supp(A), Supp(B))| = |Co(Supp(B), Supp(A))|. So, sj(Supp(A), Supp(B)) =
sj(Supp(B), Supp(A)). From Proposition 15, sj({Conc(A)}, {Conc(B)}) =
sj({Conc(B)}, {Conc(A)}). Thus, simσj (A,B) = simσj (B,A).

Substitution: Let A,B,C ∈ Arg(L) such that simσj (A,B) = 1. From Theorem 11, it
holds that a ≈ b. Hence, Supp(A) ∼= Supp(B) and Conc(A) ≡ Conc(B). If Conc(A) ≡
Conc(C), then Conc(B) ≡ Conc(C). So, sj({Conc(A)}, {Conc(C)}) = sj({Conc(B)},
{Conc(C)}). It is thus sufficient to check the equality sj(Supp(A), Supp(C)) =
sj(Supp(B), Supp(C)). From Property 1, Co(Supp(A), Supp(B)) = Supp(A) and
Co(Supp(B), Supp(A)) = Supp(B). From Property 3, |Supp(A)| = |Supp(B)|. Further-
more, Co(Supp(A), Supp(C)) = Co(Supp(B), Supp(C)). Hence, sj(Supp(A), Supp(C))
= sj(Supp(B), Supp(C)). Consequently, simσj (A,C) = simσj (B,C).

Syntax Independence: The similarity measure is based on two functions, Co (common
logical formulas) and | · | (cardinality of a set of formula), which are not looking for some
specific name of information. In other terms, these functions will return the same result
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applying any renaming function.

Minimality: Let A,B ∈ Arg(L) such that:

1. A and B are not equivalent,

2.
⋃

φi∈Supp(A)
Var(φi) ∩

⋃
φj∈Supp(B)

Var(φj) = ∅ and

3. Var(Conc(A)) ∩ Var(Conc(B)) = ∅.

From Property 2, the condition 1 implies that both argument cannot be trivial, then |Supp
(A)| > 0 or |Supp(B)| > 0. The condition 2 implies that @φ ∈ Supp(A) such that
∃ψ ∈ Supp(B) such that φ ≡ ψ, i.e. |Co(Supp(A), Supp(B))| = 0. Therefore, combining
the condition 1 and 2 we obtain that sj(Supp(A), Supp(B)) = 0.
Then condition 1 implies also Conc(A) 6≡ > or Conc(B) 6≡ >. The condition 3 implies
that if Conc(A) and Conc(B) are not both equal to >, then Conc(A) 6≡ Conc(B). There-
fore, combining the condition 1 and 3 we obtain that |Co(Conc(A), Conc(B))| = 0, i.e.
sj(Conc(A), Conc(B)) = 0.
That’s why for any σ ∈ [0, 1], simσj (A,B) = 0.

Non-Zero: Let A,B ∈ Arg(L), such that Co(Supp(A), Supp(B)) 6= ∅.
Then, from this condition we know that |Co(Supp(A),Supp(B))|

|Supp(A)|+|Supp(B)|−|Co(Supp(A),Supp(B))| > 0, i.e.
sj(Supp(A), Supp(B)) > 0. From Definition 45, an Extended Similarity Measure can-
not ignore the support (σ > 0), therefore simσj (A,B) > 0.

Monotony - Strict Monotony: Let 0 < σ < 1 and A,B,C ∈ Arg(L) be such that:

1. Conc(A) ≡ Conc(B) or Var(Conc(A)) ∩ Var(Conc(C)) = ∅,

2. Co(Supp(A), Supp(C)) ⊆ Co(Supp(A), Supp(B)),

3. Supp(B) \ Co(Supp(B), Supp(A)) = Co(Supp(B) \ Co(Supp(B), Supp(A)),
Supp(C) \ Co(Supp(C), Supp(A)))

There are two cases:

• C is trivial, i.e., Supp(C) = ∅. Condition 3) implies Supp(B) \ Co(Supp(B), Supp
(A)) = ∅, hence Supp(B) = Co(Supp(B), Supp(A)) and Supp(A) ∼= Supp(B).
Consequently, sj(Supp(A), Supp(B)) = 1. Since σ > 0, then simσj (A,B) > 0.

– Assume that A is trivial. Since Supp(B) ∼= Supp(A), then B is also trivial.
From Theorem 11, simσj (A,B) = simσj (A,C) = 1.
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– Assume that A is not trivial. Then, Conc(A) 6≡ Conc(C) and sj({Conc(A)},
{Conc(C)}) = 0. Furthermore, sj(Supp(A), Supp(C)) = 0. Hence, simσj (A,
C) = 0. So, simσj (A,B) > simσj (A,C).

• C is not trivial, i.e., Supp(C) 6= ∅ and Conc(C) 6≡ >.

– Assume that A is trivial. So, sj(Supp(A), Supp(C)) = 0 and sj({Conc(A)},
{Conc(C)}) = 0 leading to simσj (A,C) = 0. IfB is trivial, then simσj (A,B) =
1 (from Theorem 11). If B is not trivial, then sj(Supp(A), Supp(B)) = 0 and
sj({Conc(A)}, {Conc(B)}) = 0 leading to simσj (A,B) = 0.

– Assume that A is not trivial. Assume that B is trivial, then sj(Supp(A), Supp
(B)) = 0 and sj({Conc(A)}, {Conc(B)}) = 0 leading to simσj (A,B) = 0.
Condition 2) implies that Co(Supp(A), Supp(C) = ∅. So, sj(Supp(A), Supp
(C)) = 0. Note that Conc(A) 6≡ Conc(B) (since A is not trivial), then
Var(Conc(A)) ∩ Var(Conc(C)) = ∅. Thus, Conc(A) 6≡ Conc(C) and so
sj({Conc(A)}, {Conc(C)}) = 0 leading to simσj (A,C) = 0. Thus, simσj (A,B)
= simσj (A,C).

Assume now that B is not trivial (i.e., the 3 arguments are not trivial). From
condition 2) it holds that |Co(Supp(A), Supp(C))| ≤ |Co(Supp(A), Supp(B))|
and from condition 3) Supp(B) \ Co(Supp(B), Supp(A)) = Co(Supp(B) \
Co(Supp(B), Supp(A)), Supp(C) \ Co(Supp(C), Supp(A))).
Since sj(Supp(A), Supp(B)) =

|Co(Supp(A), Supp(B))|
|Supp(A)|+ |Supp(B) \ Co(Supp(B), Supp(A)))| ,

we get sj(Supp(A), Supp(B)) ≥ sj(Supp(A), Supp(C)). Since sj({Conc(A)},
{Conc(B)}) = 1 or sj({Conc(A)}, {Conc(C)}) = 0, then sσj (A,B) ≥ sσj (A,C).

If the condition 2 is strict then |Co(Supp(A), Supp(B))| > |Co(Supp(A), Supp(C))| and
thus simσj (A,B) > simσj (A,C).
If Co(Supp(A), Supp(C)) 6= ∅ and |Supp(C) \ Co(Supp(C), Supp(A))| > |Supp(B) \
Co(Supp(B), Supp(A))| then sj(Supp(A), Supp(B)) > sj(Supp(A), Supp(C)) therefore
simσj (A,B) > simσj (A,C).

Dominance: Let A,B,C ∈ Arg(L) such that:

1. Supp(B) ∼= Supp(C),

2. CNdf (Conc(A)) ∩ CNdf (Conc(C)) ⊆ CNdf (Conc(A)) ∩ CNdf (Conc(B)),



5.1. PROOFS OF CHAPTER 2 103

3. CNdf (Conc(B)) \ CNdf (Conc(A)) ⊆ CNdf (Conc(C)) \ CNdf (Conc(A)).

Condition 1 implies that Co(Supp(A), Supp(B)) = Co(Supp(A), Supp(C)). From Prop-
erty 4, |Supp(B)| = |Supp(C)|. Hence, sj(Supp(A), Supp(B)) = sj(Supp(A), Supp(C)).
Assume now that Conc(A) ≡ Conc(B). Thus, sj(Conc(A), Conc(B)) = 1. Now we have
two cases:

Conc(A) ≡ Conc(C): in this case sj(Conc(A), Conc(C)) = 1 and therefore sim(A,B) =
sim(A,C).

Conc(A) 6≡ Conc(C): in this case from Proposition 15, sj(Conc(A), Conc(C)) = 0 and
therefore sim(A,B) > sim(A,C).

Assume now that Conc(A) 6≡ Conc(B) then from condition 2 we know that Conc(A) 6≡
Conc(C) as well. Thus from Proposition 15, sj(Conc(A), Conc(B)) = sj(Conc(A),
Conc(C)) = 0 and therefore sim(A,B) = sim(A,C).

Example 11 shows that simσj violate Strict Dominance:
For any 0 < σ < 1, simσj (A,B) = simσj (A,C) while Strict Dominance ensure that
simσj (A,B) > simσj (A,C).

Triangle Inequality:

Start by the measures (Jaccard and Sokal and Sneath 2) satisfying the Triangle Inequality.
In the paper Bren and Batagelj [2006], the proof was done considering these measures
as a dissimilarity d. The Triangle Inequality for a dissimilarity is defined as d(A,C) ≤
d(A,B) + d(B,C). Defining similarity sim as the dual of the dissimilarity: sim = 1− d,
we obtain the Triangle Inequality for similarity as the form: 1+sim(A,C) ≥ sim(A,B)+
sim(B,C).
Because sim = 1−d ⇐⇒ sim−1 = −d ⇐⇒ 1−sim = d then d(A,C) ≤ d(A,B)+
d(B,C) ⇐⇒ 1− sim(A,C) ≤ 1− sim(A,B) + 1− sim(B,C) ⇐⇒ −sim(A,C) ≤
1− sim(A,B)− sim(B,C) ⇐⇒ sim(A,B) + sim(B,C) ≤ sim(A,C) + 1.
However the proofs are done for 1 + sim(A,C) ≥ sim(A,B) + sim(B,C) and the
Extended Measures are defined as simαx(A,C) = α · sx(Supp(A), Supp(C)) + (1 − α) ·
sx(Conc(A), Conc(C)).
From Bren and Batagelj [2006], for x ∈ {j, ss2}, we know that:

1 + sx(Supp(A), Supp(C)) ≥ sx(Supp(A), Supp(B)) + sx(Supp(B), Supp(C))

⇐⇒ α+α·sx(Supp(A), Supp(C)) ≥ α·(sx(Supp(A), Supp(B))+sx(Supp(B), Supp(C)))
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and

1 + sx(Conc(A), Conc(C)) ≥ sx(Conc(A), Conc(B)) + sx(Conc(B), Conc(C))

⇐⇒ (1− α) + (1− α) · sx(Conc(A), Conc(C)) ≥ (1− α) · (sx(Conc(A), Conc(B))+

sx(Conc(B), Conc(C)))

therefore

1 + α · sx(Supp(A), Supp(C)) + (1− α) · sx(Conc(A), Conc(C)) ≥

α·(sx(Supp(A), Supp(B))+sx(Supp(B), Supp(C)))+(1−α)·(sx(Conc(A), Conc(B))+

sx(Conc(B), Conc(C))).

About those that don’t respect the Triangle Inequality (Dice, Sorensen, Symmetric
Anderberg, Ochiai, Kulczynski 2), in Bren and Batagelj [2006], the proof was done for
the measures: Dice, Ochiai and Kulczynski 2. For Sorensen and Symmetric Anderberg
we give a counter example.
Let A,B,C ∈ Arg(L) such that:
A = 〈{u, v, x, y, (u ∧ v ∧ x ∧ y)→ t}, t〉,
B = 〈{w, x, y, z, (w ∧ x ∧ y ∧ z)→ t}, t〉,
C = 〈{w, y, z, (w ∧ y ∧ z)→ t}, t〉.
Then |Supp(A)| = |Supp(B)| = 5, |Supp(C)| = 4 and |Conc(A)| = |Conc(B)| =
|Conc(C)| = 1, |Co(Supp(A), Supp(B))| = 2, |Co(Supp(A), Supp(C))| = 1,
|Co(Supp(B), Supp(C))| = 3 and |Co(Conc(A), Conc(B))| = |Co(Conc(A), Conc(C))| =
|Co(Conc(B), Conc(C))| = 1.

For any 0 < σ < 1:

1 + simσs (A,C) = 1 + 4
11 · σ + 1 · (1 − σ) = 2 − 7

11σ, simσs (A,B) + simσd(B,C) =
8
14 · σ + 1 · (1 − σ) + 12

15 · σ + 1 · (1 − σ) = 2 − 22
35σ then 2 − 7

11σ < 2 − 22
35σ because

7
11 ≈ 0.6364 > 0.6286 ≈ 22

35 . Therefore, 1 + simσs (A,C) < simσs (A,B) + simσs (B,C).

1 + simσa(A,C) = 1 + 8
15 · σ + 1 · (1 − σ) = 2 − 7

15 · σ, simσa(A,B) + simσa(B,C) =
16
22 · σ+ 1 · (1− σ) + 24

27 · σ+ 1 · (1− σ) = 2− 38
99 · σ then 2− 7

15 · σ < 2− 38
99 · σ because

7
15 ≈ 0.4667 > 0.3838 ≈ 38

99 . Therefore, 1 + simσa(A,C) < simσa(A,B) + simσa(B,C).

.
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Independent Distribution: Let A,B,A′, B′ ∈ Arg(L) such that:

1. Var(Conc(A)) ∩ Var(Conc(B)) = Var(Conc(A′)) ∩ Var(Conc(B′)) = ∅,

2. Co(Supp(A), Supp(B)) ∼= Co(Supp(A′), Supp(B′)),

3. Supp(A) ∪ Supp(B) ∼= Supp(A′) ∪ Supp(B′).

The Extended Jaccard, Dice, Sorensen, Symmetric Anderberg and Sokal and Sneath 2
have the same form:

α|Co(Φ,Ψ)|
β(|Φ|+ |Ψ|) + γ|Co(Φ,Ψ)|

such that Extended Jaccard: (α = 1, β = 1, γ = −1), Dice: (α = 2, β = 1, γ = 0),
Sorensen: (α = 4, β = 1, γ = 2), Symmetric Anderberg: (α = 8, β = 1, γ = 6) and
Sokal and Sneath 2: (α = 1, β = 2, γ = −3).
To start, for all the syntactic similarity measures, the first condition ensure that the simi-
larity on the conclusion is 0.
The second condition ensure that the numerator between sim(A,B) and sim(A′, B′) is
equal. And the third condition say that Supp(A) ∪ Supp(B) ∼= Supp(A′) ∪ Supp(B′), i.e.
|Supp(A)|+|Supp(B)|−|Co(Supp(A), Supp(B))| = |Supp(A′)|+|Supp(B′)|−|Co(Supp
(A′), Supp(B′))|. Given that |Co(Supp(A), Supp(B))| = |Co(Supp(A′), Supp(B′))| from
the condition 2 then the denominator is also equal.

For the counter example of Ochiai and Kulczynski 2, let us take the example 16, with
any 0 < σ < 1 :
simσo (A,B) = 1√

2
√

2 · σ + 0 · (1− σ) = 1
2 · σ.

simσo (A′, B′) = 1√
3
√

1 · σ + 0 · (1− σ) = 1√
3 · σ.

simσku(A,B) = 1
2

(
1
2 + 1

2

)
· σ + 0 · (1− σ) = 1

2 · σ.

simσku(A′, B′) = 1
2

(
1
3 + 1

1

)
· σ + 0 · (1− σ) = 2

3 · σ.

Proof. [Theorem 10] The theorem talk about similarity measure on arguments which use
the same similarity on set of formulas on the support and the conclusion. Then show-
ing the ranking on the similarity measure on set of formulas will show also the ranking
between the similarity measure on arguments. The following ranking: simss ≤ simj ≤
simd ≤ sims ≤ sima was proved in Bouchon-Meunier et al. [2009].
To prove the following ranking: simss ≤ simj ≤ simd ≤ simo ≤ simku, we have only to
show the part between the three last similarity (d,o,ku).
For the proofs we will use the equivalent form of the measures (defined in table 1.4) using
the notation with a, b, c such that a ≥ 0, b ≥ 0 and c ≥ 0.
simd ≤ simo:
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2a
2a+ b+ c

≤ a√
a+ b

√
a+ c

⇔ 2a
2a+ b+ c

≤ 2a
2(
√
a+ b

√
a+ c)

⇔ 2a+ b+ c ≥ 2(
√
a+ b

√
a+ c)

⇔ (2a+ b+ c)2 ≥ (2(
√
a+ b

√
a+ c))2

⇔ 4a2 + 4ab+ 4ac+ b2 + 2bc+ c2 ≥ 4a2 + 4ab+ 4ac+ 4bc

⇔ b2 + c2 ≥ 2bc

⇔ b2 + c2 − 2bc ≥ 0

⇔ (b− c)2 ≥ 0

simo ≤ simku:

a√
a+ b

√
a+ c

≤ 1
2

(
a

a+ b
+ a

a+ c

)

⇔ a√
a+ b

√
a+ c

≤ a(a+ c) + a(a+ b)
2(a+ b)(a+ c)

⇔ a√
a+ b

√
a+ c

≤
a+ 1

2b+ 1
2c

a+ b+ c+ bc
a

⇔
a(a+ b+ c+ bc

a
)

(
√
a+ b

√
a+ c)(a+ b+ c+ bc

a
)
≤

(a+ 1
2b+ 1

2c)(
√
a+ b

√
a+ c)

(a+ b+ c+ bc
a

)(
√
a+ b

√
a+ c)

⇔ [a(a+ b+ c+ bc

a
)]2 ≤ [(a+ 1

2b+ 1
2c)(
√
a+ b

√
a+ c)]2

⇔ a4 + 2a3b+ 2a3c+ a2b2 + 4a2bc+ a2c2 + 2ab2c+ 2abc2 + b2c2 ≤

a4 + 2a3b+ 2a3c+ 5a2b2

4 + 7a2bc

2 + 5a2c2

4 + ab3

4 + 7ab2c

4 + 7abc2

4 +

ac3

4 + b3c

4 + b2c2

2 + bc3

4

⇔ a2
(
bc

2

)
+ a

(
b2c+ bc2

4

)
+ b2c2

2 ≤ a2
(
b2 + c2

4

)
+ a

(
b3 + c3

4

)
+ b3c+ bc3

4
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We will investigate now the 3 cases:

1.

a2
(
bc

2

)
≤ a2

(
b2 + c2

4

)

⇔ bc

2 ≤
b2 + c2

4
⇔ 0 ≤ b2 + c2 − 2bc

⇔ 0 ≤ (b− c)2

2.

a

(
b2c+ bc2

4

)
≤ a

(
b3 + c3

4

)
⇔ b2c+ bc2 ≤ b3 + c3

⇔ 0 ≤ b3 − b2c+ c3 − bc2

⇔ 0 ≤ b2(b− c) + c2(c− b)

Let’s study the three different cases:

• if b = c then 0 = 0

• if b < c then b−c < c−b, b2 < c2, 0 < c−b therefore 0 < b2(b−c)+c2(c−b)

• if c < b then with the same reasoning than in the second case: 0 < b2(b− c) +
c2(c− b)

3.

b2c2

2 ≤ b3c+ bc3

4
⇔ 2b2c2 ≤ b3c+ bc3

⇔ 0 ≤ b3c+ bc3 − 2b2c2

⇔ 0 ≤ bc(b− c)2

Moreover, we show that sims, sima and simo, simku can obtain contradictory results.
Given that sims ≤ sima and simo ≤ simku we will only show that there exists sets such
that simku < sims and simo > sima.
Let’s a = 1, b = 1, c = 2 then simku = 5

12 = 0.417 and sims = 4
7 = 0.571 then

simku < sims.
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Let’s a = 1, b = 1, c = 200 then simo = 1√
402 = 0.05 and sima = 8

209 = 0.038 then
simo > sima.

Proof. [Theorem 11] We show the result for Extended Jaccard-based Measures. The same
reasoning holds for the other measures. Let A,B ∈ Arg(L) and σ ∈ ]0, 1[. Assume that
A ≈ B, then

i) Supp(A) ∼= Supp(B) and

ii) Conc(A) ≡ Conc(B).

From i) and Property 1, Co(Supp(A), Supp(B)) = Supp(A). From Property 4, |Supp(A)| =
|Supp(B)|. Thus, sj(Supp(A), Supp(B)) = 1.
From ii) and Proposition 15, sj(Conc(A), Conc(B)) = 1. So, simσj (A,B) = 1.

Assume that simσj (A,B) = 1.
Since σ ∈ ]0, 1[, then sj(Supp(A), Supp(B)) = 1 and sj(Conc(A), Conc(B)) = 1. From
Proposition 15, it holds that Conc(A) ≡ Conc(B). Recall that sj(Supp(A), Supp(B)) =

|Co(Supp(A),Supp(B))|
|Supp(A)|+|Supp(B)|−|Co(Supp(A),Supp(B))| = 1.
Furthermore, |Supp(A)|+|Supp(B)|−|Co(Supp(A), Supp(B))| = |Supp(A)\Co(Supp(A),
Supp(B))|+|Supp(B)\Co(Supp(B), Supp(A))|+|Co(Supp(A), Supp(B))|. Thus, |Supp
(A) \ Co(Supp(A), Supp(B))|+ |Supp(B) \ Co(Supp(B), Supp(A))|+ |Co(Supp(A),
Supp(B))| = |Co(Supp(A), Supp(B))|, i.e. |Supp(A) \ Co(Supp(A), Supp(B))|+ |Supp
(B) \ Co(Supp(B), Supp(A))| = 0. So, |Supp(A) \ Co(Supp(A), Supp(B))| = 0 and
|Supp(B) \ Co(Supp(B), Supp(A))| = 0. Then Supp(A) = Co(Supp(A), Supp(B)) and
Supp(B) = Co(Supp(B), Supp(A)). Thus, Supp(A) ∼= Supp(B), and so A ≈ B.

Proof. [Theorem 12] Let x ∈ {j, d, s, a, ss, o, ku}, σ ∈ (0, 1), and A,B ∈ Arg(L).
Assume that simσx(A,B) = 0. Since σ > 0, then

i) sx(Supp(A), Supp(B)) = 0 and

ii) sx({Conc(A)}, {Conc(B)}) = 0.

From Proposition 15, Conc(A) 6≡ Conc(B). This means also that either A or B is not
trivial. There are thus two cases regarding ii):
Case 1. Supp(A) = ∅ or Supp(B) = ∅. Hence, Co(Supp(A), Supp(B)) = ∅.
Case 2. Supp(A) 6= ∅ and Supp(B) 6= ∅. Thus, Co(Supp(A), Supp(B)) = ∅.

Assume now that i) Co(Supp(A), Supp(B)) = ∅ and ii) Conc(A) 6≡ Conc(B). From
Proposition 15, sx({Conc(A)}, {Conc(B)}) = 0. Regarding i) there are two cases:
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Case 1. Supp(A) 6= ∅ and Supp(B) 6= ∅; and
Case 2. Supp(A) = ∅ or Supp(B) 6= ∅ (But not both since Conc(A) 6≡ Conc(B)).
In both cases, sx(Supp(A), Supp(B)) = 0. Hence, simσx(A,B) = 0.

5.1.5 Proofs of section 2.4.2: Mixed Syntactic and Semantic Similar-
ity Measure

Theorem 13. According to the Theorem 9, for any 0 < σ < 1, simσj , violates Strict
Dominance and satisfies all the remaining principles. The same reasoning as in the proof
of Theorem 9 holds with simσcnj .

Except for (Strict) Dominance, only Minimality, (Strict) Monotony and Independent
Distribution have a condition on the conclusions. In fact, there are only two different
constraints and they are treated the same way by sj and scnj. Let A,B ∈ Arg(L):

• if Conc(A) ≡ Conc(B) then sj(A,B) = scnj(A,B) = 1.

• if Var(Conc(A)) ∩ Var(Conc(C)) = ∅ then sj(A,B) = scnj(A,B) = 0.

Let us see the satisfaction of the remaining principle, (Strict) Dominance.

[(Strict) Dominance]: Let A,B,C ∈ Arg(L), such that

1. Supp(B) ∼= Supp(C),

2. CNdf (Conc(A)) ∩ CNdf (Conc(C)) ⊆ CNdf (Conc(A)) ∩ CNdf (Conc(B)),

3. CNdf (Conc(B)) \ CNdf (Conc(A)) ⊆ CNdf (Conc(C)) \ CNdf (Conc(A)),

And either

• the inclusion in condition 2 is strict or,

• CNdf (Conc(A)) ∩ CNdf (Conc(C)) 6= ∅ and condition 3 is strict.

Let us recall the definition 47:

scnj(φ, ψ) = |CNdf (φ) ∩ CNdf (ψ)|
|CNdf (φ) ∪ CNdf (ψ)|

Assume now the first case where the inclusion in condition 2 is strict.
From condition 2, |CNdf (Conc(A))∩CNdf (Conc(C))| < |CNdf (Conc(A))∩CNdf (Conc(B))|.
From condition 2 and 3, we know that |CNdf (Conc(B))| ≤ |CNdf (Conc(C))|. Given that
|CNdf (Conc(A))∪CNdf (Conc(C))| = |CNdf (Conc(A))|+|CNdf (Conc(C))|−|CNdf (Conc(A))
∩CNdf (Conc(C))| and |CNdf (Conc(A))∪CNdf (Conc(B))| = |CNdf (Conc(A))|+|CNdf (Conc
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(B))|−|CNdf (Conc(A))∩CNdf (Conc(B))| therefore |CNdf (Conc(A))∪CNdf (Conc(C))| ≥
|CNdf (Conc(A)) ∪ CNdf (Conc(B))|. In this first case we have:

|CNdf (Conc(A)) ∩ CNdf (Conc(C))|
|CNdf (Conc(A)) ∪ CNdf (Conc(C))| <

|CNdf (Conc(A)) ∩ CNdf (Conc(B))|
|CNdf (Conc(A)) ∪ CNdf (Conc(B))| .

Assume now the second case where CNdf (Conc(A)) ∩ CNdf (Conc(C)) 6= ∅ and condi-
tion 3 is strict.
Here |CNdf (Conc(A)) ∩ CNdf (Conc(C))| ≤ |CNdf (Conc(A)) ∩ CNdf (Conc(B))|. Using the
same reasoning as before but with the new condition we obtain this time: |CNdf (Conc(A))
∪ CNdf (Conc(C))| > |CNdf (Conc(A)) ∪ CNdf (Conc(B))|. Therefore

|CNdf (Conc(A)) ∩ CNdf (Conc(C))|
|CNdf (Conc(A)) ∪ CNdf (Conc(C))| <

|CNdf (Conc(A)) ∩ CNdf (Conc(B))|
|CNdf (Conc(A)) ∪ CNdf (Conc(B))| .

5.1.6 Proofs of section 2.4.3: Similarity Measures for Non-Concise
Arguments

Proof. [Proposition 18] Let A = 〈{φ1, . . . , φn}, φ〉 ∈ Arg(L), and let LitA = ⋃
i∈{1,...,n}

Lit(φi). Similarly as in the proof of Proposition 13(2), we obtain that there are finitely
many classes of equivalence ≡ on LitA. Let us denote by F(LitA) the set of all for-
mulas from F whose set of literals is a subset of LitA. Since F contains only one
formula per equivalence class, we obtain that the set F(LitA) is finite. Since for each
B = 〈{φ′1, . . . , φ′n}, φ′〉 ∈ CR(A) we have:

• {φ′1, . . . , φ′n} ⊆ F(LitA), and

• φ′ = φ,

the set CR(A) is finite.

Proof. [Proposition 19] Obviously simA
CR(A,B, simσx) ≥ 0. On the other hand, for any

pair of arguments C,D ∈ Arg(L), any x ∈ {j, d, s, a, ss, o, ku, cnj} and 0 < σ < 1,
we have simσx(C,D) ≤ 1. Therefore, for any finite set of arguments Σ, Max(C,Σ, sim) =
maxC′∈Σ simσx(C,C ′) ≤ 1. Then for the considered A,B ∈ Arg(L), we have

∑
Ai∈CR(A)

Max(Ai, CR(B), simσx) ≤ |CR(A)| and
∑

Bj∈CR(B)
Max(Bj, CR(A), simσx) ≤ |CR(B)|. Conse-

quently, simA
CR(A,B, simσx) ≤ 1. Then simA

CR(A,B, simσx) ∈ [0, 1].
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Proof. [Proposition 20] Here we will use the result from Theorem 11, which states that,
for all σ such that 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}, simσx(A,B) = 1 iff both
Supp(A) ∼= Supp(B) and Conc(A) ≡ Conc(B).

First we show the implication from right to left. Let A,B ∈ Arg(L) such that

(a) ∀A′ ∈ CR(A), ∃B′ ∈ CR(B) such that Supp(A′) ∼= Supp(B′), Conc(A′) ≡ Conc(B′)
and

(b) ∀B′ ∈ CR(B), ∃A′ ∈ CR(A) such that Supp(B′) ∼= Supp(A′), Conc(B′) ≡ Conc(A′).

Let 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}. If Ai ∈ CR(A) then, by (a), there exists
Bi ∈ CR(B) such that Supp(Ai) ∼= Supp(Bi) and Conc(Ai) ≡ Conc(Bi). Consequently,
simσx(Ai, Bi) = 1, so Max(Ai, CR(B), simσx) = 1. Since this holds for every Ai ∈ CR(A),
we have

∑
Ai∈CR(A)

Max(Ai, CR(B), simσx) = |CR(A)|. In the same way we can use (b) to

conclude
∑

Bj∈CR(B)
Max(Bj, CR(A), simσx) = |CR(B)|. Consequently, simA

CR(A,B, simσx) =

1.
From (a) we can obtain that for every A′ ∈ CR(A) and φ ∈ Supp(A′) there exists

B′ ∈ CR(B) and ψ ∈ Supp(B′) such that ψ ≡ φ. From (b) we have that for every
B′ ∈ CR(B) and ψ ∈ Supp(B′) there exists A′ ∈ CR(A) and φ ∈ Supp(A′) such that
ψ ≡ φ. Together we have

⋃
A′∈CR(A)

Supp(A′) ∼=
⋃

B′∈CR(B)
Supp(B′), i.e., US(A) ∼= US(B).

Therefore sx(US(A), US(B)) = 1. Moreover, for every A′ ∈ CR(A) ∃B′ ∈ CR(B) such
that Conc(A′) ≡ Conc(B′). From Conc(A) = Conc(A′) and Conc(B) = Conc(B′)
we obtain Conc(A) ≡ Conc(B), so sx({Conc(A)}, {Conc(B)}) = 1. Consequently,
simU

CR(A,B, sx, sx, σ) = σ · sx(US(A), US(B)) + (1− σ) · sx({Conc(A)}, {Conc(B)}) =
σ + (1− σ) = 1.

Now let us suppose that A,B ∈ Arg(L), 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku} are
such that simA

CR(A,B, simσx) = simU
CR(A,B, sx, sx, σ) = 1. From simA

CR(A,B, simσx) = 1
we have both

∑
Ai∈CR(A)

Max(Ai, CR(B), simσx) = |CR(A)| and
∑

Bj∈CR(B)
Max(Bj, CR(A), simσx)

= |CR(B)|. Then for every Ai ∈ CR(A) we have Max(Ai, CR(B), simσx) = 1, i.e., there ex-
istsBi ∈ CR(B) such that simσx(Ai, Bi) = 1. Then Supp(Ai) ∼= Supp(Bi) and Conc(Ai) ≡
Conc(Bi). Thus, (a) holds. In the same way we can obtain (b).

From Corollary 3, we know that for any σ such that 0 < σ < 1, simσcnj(A,B) = 1 iff
both Supp(A) ∼= Supp(B) and Conc(A) ≡ Conc(B). Then, using the same reasoning as
before (note that for simU

CR we use sx = sj and sy = scnj) the result holds for simσcnj.

Proof. [Theorem 14]
Satisfaction of the Principles
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[Syntax Independence]

For a permutation on the set of variables π, and A ∈ Arg(L), let Aπ denotes the
argument obtained by replacing each variable p in A with π(p). It is shown in The-
orems 9 and 13, that for every pair of arguments A,B ∈ Arg(L), every σ such that
0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku} and y ∈ {j, d, s, a, ss, o, ku, cnj} with the
condition that if y = cnj then x = j, otherwise y = x, it holds

simσy (A,B) = simσy (Aπ, Bπ).

Also, from the fact that CR(Aπ) = {Bπ | B ∈ CR(A)}, we have

– |CR(A)| = |CR(Aπ)|

– for every Ai ∈ CR(A), Max(Ai, CR(B), simσy ) = Max(Aπi , CR(Bπ), simσy ), and
for every Bi ∈ CR(B), Max(Bi, CR(A), simσy ) = Max(Bπ

i , CR(Aπ), simσy ).

Thus, simA
CR(A,B, simσy ) = simA

CR(Aπ, Bπ, simσy ). Let us now switch to the second
measure. US(Aπ) = ⋃

C∈CR(Aπ)
Supp(C) = ⋃

D∈CR(A)
Supp(Dπ) = {Dπ | D ∈ US(A).

Similarly, US(Bπ) = {F π | F ∈ US(B). It was shown in Theorem 9 and 13, that
for any similarity measure sy, and two sets of formulas Φ,Ψ ⊆f L, sy(Φ,Ψ) =
sy({Eπ | E ∈ Φ}, {Eπ | E ∈ Ψ}). Now we obtain simU

CR(A,B, sx, sy, σ) =
simU

CR(Aπ, Bπ, sx, sy, σ) directly form the definition of U-CR.

[Maximality] Let A ∈ Arg(L), σ such that 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku}
and y ∈ {j, d, s, a, ss, o, ku, cnj} with the condition that if y = cnj then x = j,
otherwise y = x. From Theorems 9 and 13, we know that each simσy satisfies Max-
imality, i.e. ∀y ∈ {j, d, s, a, ss, o, ku, cnj}, simσy (A,A) = 1. From Proposition
13(4) and the fact that A ≈ A, CR(A) = CR(A) and so CR(A) = CR(A). Therefore,∑
Ai∈CR(A)

Max(Ai, CR(A), simσy ) = |CR(A)|, consequently simA
CR(A,A, simσy ) = 1.

As already proved in Proposition 20, given that CR(A) = CR(A), we have US(A) =
US(A) and Conc(A) = Conc(A), hence simU

CR(A,A, sx, sy, σ) = 1.

[Symmetry] Let A,B ∈ Arg(L), σ ∈ ]0, 1[, x ∈ {j, d, s, a, ss, o, ku} and y ∈
{j, d, s, a, ss, o, ku, cnj} with the condition that if y = cnj then x = j, otherwise
y = x. From Definition 51:

simU
CR(A,B, sx, sy, σ) = σ·sx(US(A), US(B))+(1−σ)·sy({Conc(A)}, {Conc(B)}).



5.1. PROOFS OF CHAPTER 2 113

From Theorems 9 and 13, we know that each simσy satisfies Symmetry, therefore
simU

CR(A,B, sx, sy, σ) = simU
CR(B,A, sx, sy, σ).

From Definition 50 and because the addition is commutative:∑
Ai∈CR(A)

Max(Ai, CR(B), sim) + ∑
Bj∈CR(B)

Max(Bj, CR(A), sim)

|CR(A)|+ |CR(B)|

=∑
Bi∈CR(B)

Max(Bi, CR(A), sim) + ∑
Aj∈CR(A)

Max(Aj, CR(B), sim)

|CR(B)|+ |CR(A)|
⇔

simA
CR(A,B, sim) = simA

CR(B,A, sim)

[Substitution] Let A,B ∈ Arg(L), σ ∈ ]0, 1[, x ∈ {j, d, s, a, ss, o, ku} and y ∈
{j, d, s, a, ss, o, ku, cnj} with the condition that if y = cnj then x = j, otherwise
y = x. From Proposition 20, simA

CR(A,B, sim) = simU
CR(A,B, sx, sy, σ) = 1 iff

– ∀A′ ∈ CR(A), ∃B′ ∈ CR(B) such that Supp(A′) ∼= Supp(B′), Conc(A′) ≡
Conc(B′) and

– ∀B′ ∈ CR(B), ∃A′ ∈ CR(A) such that Supp(B′) ∼= Supp(A′), Conc(B′) ≡
Conc(A′).

Given that each concise refinement argument of A has an equivalent argument in
CR(B) and vice versa, and because from Theorems 9 and 13, the principle Substi-
tution is satisfied by each simσy , for any C ∈ Arg(L):

– ∀Ai ∈ CR(A), ∃Bj ∈ CR(B) s.t. maxC∈CR(C) simσy (A,C) = maxC∈CR(C)

simσy (B,C), i.e. Max(A, CR(C), simσy ) = Max(B, CR(C), simσy ).

– ∀Bi ∈ CR(B), ∃Aj ∈ CR(A) s.t. maxC∈CR(C) simσy (A,C) = maxC∈CR(C)

simσy (B,C), i.e. Max(A, CR(C), simσy ) = Max(B, CR(C), simσy ).

This means:

∑
Ai∈CR(A)

Max(Ai, CR(C), simσy ) +
∑

Cj∈CR(C)
Max(Cj, CR(A), simσy )

=
∑

Bi∈CR(B)
Max(Bi, CR(C), simσy ) +

∑
Cj∈CR(C)

Max(Cj, CR(B), simσy ).

For the second similarity measure simU
CR, from Proposition 20 we can deduce that
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⋃
A′∈CR(A)

Supp(A′) ∼=
⋃

B′∈CR(B)
Supp(B′), i.e. US(A) ∼= US(B) and Conc(A) ≡ Conc(B).

Moreover, from Theorems 9 and 13, each sx and sy satisfy the principle Substitu-
tion, therefore:

σ · sx(US(A), US(C)) + (1− σ) · sy({Conc(A)}, {Conc(C)})

= σ · sx(US(B), US(C)) + (1− σ) · sy({Conc(B)}, {Conc(C)}).

[Minimality] Let σ ∈ ]0, 1[, x ∈ {j, d, s, a, ss, o, ku} and y ∈ {j, d, s, a, ss, o, ku,
cnj} with the condition that if y = cnj then x = j, otherwise y = x. Let A,B ∈
Arg(L), such that

– A and B are not equivalent,

–
⋃

φi∈Supp(A)
Var(φi) ∩

⋃
φj∈Supp(B)

Var(φj) = ∅ and

– Var(Conc(A)) ∩ Var(Conc(B)) = ∅.

Let CR(A) = {A1, · · · , An}, CR(B) = {B1, · · · , Bm}.

From the Definition 42, refinement arguments do not add new literals according
to the original argument, and so do not add new variables in the support and in
the conclusion. Therefore, for two arguments having no common variable in their
support and conclusion, they cannot have any common variable in their concise
arguments.

For everyAi ∈ CR(A),Bj ∈ CR(B), |Co(Supp(Ai), Supp(Bj))| = 0, |Co(Conc(Ai),
Conc(Bj))| = 0 and so simA

CR(A,B, simσx) = 0, and simU
CR(A,B, sx, sx, σ) = 0.

Moreover, in the absence of common literals in the conclusions, the two formulas
cannot have a common inference using dependent finite CN, i.e., |CNdf (Conc(Ai))∩
CNdf (Conc(Bj))| = 0. Consequently, simA

CR(A,B, simσcnj) = 0, and simU
CR(A,B, sj,

scnj, σ) = 0.

[Triangle Inequality] Let σ ∈ ]0, 1[, x ∈ {j, d, s, a, ss, o, ku} and y ∈ {j, d, s, a,
ss, o, ku, cnj} with the condition that if y = cnj then x = j, otherwise y = x. Let
A,B ∈ Arg(L). From definition 51:

simU
CR(A,B, sx, sy, σ) = σ·sx(US(A), US(B))+(1−σ)·sy({Conc(A)}, {Conc(B)}).

In other words, simU
CR(A,B, sx, sy, σ) = simσy (A′, B′) such thatA′ = 〈US(A), Conc

(A)〉 and B′ = 〈US(B), Conc(B)〉. Cases where A′, B′ /∈ Arg(L) because the sup-
port is not minimal, are not important to the rest of the proof, we will simply cal-
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culate the similarity between set of formulas, regardless of whether they satisfy the
constraint of an argument.

From Theorem 9 and Theorem 13, we show that only the similarity measures simσj ,
simσss and simσcnj satisfy Triangle Inequality. Therefore when x ∈ {j, ss}, y ∈
{j, ss, cnj}, and for any C ∈ Arg(L) such that C ′ = 〈US(C), Conc(C)〉:

1 + simσy (A′, C ′) ≥ simσy (A′, B′) + simσy (B′, C ′).

This means:

1 + simU
CR(A,C, sx, sy, σ) ≥ simU

CR(A,B, sx, sy, σ) + simU
CR(B,C, sx, sy, σ).

[Strict Dominance] Let simσcnj and A,B,C ∈ Arg(L) such that from the principle
Strict Dominance, for any σ ∈ ]0, 1[, simσcnj(A,B) > simσcnj(A,C) i.e.

σsj(Supp(A), Supp(B)) + (1− σ)scnj(Conc(A), Conc(B))

> σsj(Supp(A), Supp(C)) + (1− σ)scnj(Conc(A), Conc(C))

⇔ σx1 + (1− σ)y1 > σx2 + (1− σ)y2

Like it was proved in Theorem 13, given that Supp(B) ∼= Supp(C) we obtain
x1 = x2 and with the conditions of Strict Dominance y1 > y2, hence:

(1− σ)y1 > (1− σ)y2

Now, we know that using concise arguments can change their support and therefore
it is possible that x1 6= x2, but the conclusions don’t change, i.e. y1 > y2.

We will show that for any x1, x2, y1, y2 ∈ [0, 1] such that y1−y2 = α > 0, ∃σ ∈]0, 1[
such that σx1 + (1− σ)y1 > σx2 + (1− σ)y2 is true.

σx1 + (1− σ)y1 > σx2 + (1− σ)y2

⇔ (1− σ)α > σ(x2 − x1)

In the case where x2 ≤ x1, it is obviously true.
When x2 > x1, let us take the most critical case when x2 = 1 and x1 = 0, we have
then (1 − σ)α > σ ⇔ α > σ(1 + α) ⇔ α

1+α > σ. Given that α
1+α ∈]0, 1[ like σ,

and because the number of element in this interval is infinite, then for any α there
exists a σ such that α

1+α > σ.
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For the measure simU
CR we can apply directly the definition from σx1 + (1−σ)y1 >

σx2 + (1− σ)y2 and the reasoning holds.
For the measure simA

CR we can rewrite its definition as:

∑
Ai∈CR(A)

Max(Ai, CR(B), sim) + ∑
Bj∈CR(B)

Max(Bj, CR(A), sim)

|CR(A)|+ |CR(B)|

⇔ (σx1 + (1− σ)y) + · · ·+ (σxn + (1− σ)y)
n+m

+(σxn+1 + (1− σ)y) + · · ·+ (σxn+m + (1− σ)y)
n+m

⇔ σx′ + (1− σ)y, where x′ =

∑
i∈{1,··· ,n+m}

xi

n+m

Therefore using the same reasoning as before, simA
CR using simσcnj satisfies Strict

Dominance according to the good σ.

Violation of the Principles

[Non-Zero] Let A,B ∈ Arg(L) such that:

– A = 〈{p ∧ q}, p〉,

– B = 〈{p ∧ q}, q〉.

CR(A) = {A1}, CR(B) = {B1}, where:

– A1 = 〈{p}, p〉,

– B1 = 〈{q}, q〉.

Let σ s.t. 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku} and y ∈ {j, d, s, a, ss, o, ku, cnj}
with the condition that if y = cnj then x = j, otherwise y = x. From the axiom
Non-Zero, simσy (A,B) > 0 while simA

CR(A,B, simσy ) = simU
CR(A,B, sx, sy, σ) = 0.

[Monotony] Let σ s.t. 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku} and y ∈ {j, d, s, a, ss,
o, ku, cnj} with the condition that if y = cnj then x = j, otherwise y = x. Let
A,B,C ∈ Arg(L) such that:

– A = 〈{p, t, (p ∧ t)→ r}, r〉,

– B = 〈{p ∧ q, t}, p ∧ t〉,
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– C = 〈{t}, t〉.

CR(A) = {A1}, CR(B) = {B1}, CR(C) = {C1}, where:

– A1 = 〈{p, t, (p ∧ t)→ r}, r〉,

– B1 = 〈{p, t}, p ∧ t〉,

– C1 = 〈{t}, t〉.

From Proposition 21, because A and C are concise arguments:

simA
CR(A,C, simσy ) = simσy (A,C),

simU
CR(A,C, sx, sy, σ) = simσy (A,C).

Then, let us calculate for each parameterised measure the similarity obtained in this
example.

– Extended Jaccard:

* simA
CR(A,B, simσj ) = σ · 2

3

* simU
CR(A,B, sj, sj, σ) = σ · 2

3

* simσj (A,C) = σ · 1
3

Then for every 0 < σ < 1: simA
CR(A,B, simσj ) > simA

CR(A,C, simσj ) and
simU

CR(A,B, sj, sj, σ) > simU
CR(A,C, sj, sj, σ).

– Extended Dice:

* simA
CR(A,B, simσd) = σ · 4

5

* simU
CR(A,B, sd, sd, σ) = σ · 4

5

* simσd(A1, C1) = σ · 2
4

Then for every 0 < σ < 1: simA
CR(A,B, simσd) > simA

CR(A,C, simσd) and
simU

CR(A,B, sd, sd, σ) > simU
CR(A,C, sd, sd, σ).

– Extended Sorensen:

* simA
CR(A,B, simσs ) = σ · 8

9

* simU
CR(A,B, ss, ss, σ) = σ · 8

9

* simσs (A1, C1) = σ · 4
6

Then for every 0 < σ < 1: simA
CR(A,B, simσs ) > simA

CR(A,C, Ssimσs ) and
simU

CR(A,B, ss, ss, σ) > simU
CR(A,C, ss, ss, σ).

– Extended Symmetric Anderberg:
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* simA
CR(A,B, simσa) = σ · 16

17

* simU
CR(A,B, sa, sa, σ) = σ · 16

17

* simσa(A1, C1) = σ · 8
10

Then for every 0 < σ < 1: simA
CR(A,B, simσa) > simA

CR(A,C, simσa) and
simU

CR(A,B, sa, sa, σ) > simU
CR(A,C, sa, sa, σ).

– Extended Sokal and Sneath 2:

* simA
CR(A,B, simσss) = σ · 2

4

* simU
CR(A,B, sss, sss, σ) = σ · 2

4

* simσss(A1, C1) = σ · 1
5

Then for every 0 < σ < 1: simA
CR(A,B, simσss) > simA

CR(A,C, simσss) and
simU

CR(A,B, sss, sss, σ) > simU
CR(A,C, sss, sss, σ).

– Extended Ochiai:

* simA
CR(A,B, simσo ) = σ · 2√

3·
√

2 + 0 ≈ σ · 2
2.449 ≈ σ · 0.816

* simU
CR(A,B, so, so, σ) ≈ σ · 0.816

* simσo (A1, C1) = σ · 1√
3 + 0 ≈ σ · 1

1.732 ≈ σ · 0.577

Then for every 0 < σ < 1: simA
CR(A,B, simσo ) > simA

CR(A,C, simσo ) and
simU

CR(A,B, so, so, σ) > simU
CR(A,C, so, so, σ).

– Extended Kulczynski 2:

* simA
CR(A,B, simσku) = σ · 5

6

* simU
CR(A,B, sku, sku, σ) = σ · 5

6

* simσku(A1, C1) = σ · 4
6

Then for every 0 < σ < 1: simA
CR(A,B, simσku) > simA

CR(A,C, simσku) and
simU

CR(A,B, sku, sku, σ) > simU
CR(A,C, sku, sku, σ).

– Mixed CN-based Jaccard Measure:

* simA
CR(A,B, simσcnj) = σ · 2

3

* simU
CR(A,B, sj, scnj, σ) = σ · 2

3

* simσcnj(A1, C1) = σ · 1
3

Then for every 0 < σ < 1: simA
CR(A,B, simσcnj) > simA

CR(A,C, simσcnj) and
simU

CR(A,B, sj, scnj, σ) > simU
CR(A,C, sj, scnj, σ).

From the axiom of Monotony, sim(A,C) ≥ sim(A,B) while for each measure
with any 0 < σ < 1, simA

CR(A,B, simσy ) > simA
CR(A,C, simσy ) and simU

CR(A,B, sx,
sy, σ) > simU

CR(A,C, sx, sy, σ).
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[Strict Monotony] Strict Monotony is violated because, according to the example
above in Monotony, the strict version is applicable but also violated.

[Dominance] Let σ s.t. 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku} and y ∈ {j, d, s, a, ss,
o, ku, cnj} with the condition that if y = cnj then x = j, otherwise y = x. Let
A,B,C ∈ Arg(L) such that:

– A = 〈{p, t}, (p ∨ q) ∧ t〉,

– B = 〈{p ∧ q}, p ∨ q〉,

– C = 〈{p ∧ q}, p〉.

CR(A) = {A1}, CR(B) = {B1, B2, B3}, CR(C) = {C1}, where:

– A1 = 〈{p, t}, (p ∨ q) ∧ t〉,

– B1 = 〈{p}, p ∨ q〉, B2 = 〈{q}, p ∨ q〉, B3 = 〈{p ∨ q}, p ∨ q〉,

– C1 = 〈{p}, p〉.

From definition 50, using the definition 45, we obtain in our example:

simA
CR(A,B, simσy ) =

simσy (A1, B1) + simσy (A1, B1) + simσy (A1, B2) + simσy (A1, B3)
4 .

From definition 51:

simU
CR(A,B, sx, sy, σ) = σ·sx(US(A), US(B))+(1−σ)·sy({Conc(A)}, {Conc(B)}).

Let compute for every 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}:

– Extended Jaccard:

* simA
CR(A,B, simσj ) = σ· 12 +σ· 12 +0+0

4 = σ · 1
4 ,

* simU
CR(A,B, sj, sj, σ) = σ · 1

4 ,

* simA
CR(A,C, simσj ) = simU

CR(A,C, sj, sj, σ) = 1
2 .

Then for every 0 < σ < 1: simA
CR(A,C, simσj ) > simA

CR(A,B, simσj ) and
simU

CR(A,C, sj, sj, σ) > simU
CR(A,B, sj, sj, σ).

– Extended Dice:

* simA
CR(A,B, simσd) = σ· 23 +σ· 23 +0+0

4 = σ · 1
3 ,

* simU
CR(A,B, sd, sd, σ) = σ · 2

5 ,
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* simA
CR(A,C, simσd) = simU

CR(A,C, sd, sd, σ) = 2
3 .

Then for every 0 < σ < 1: simA
CR(A,C, simσd) > simA

CR(A,B, simσd) and
simU

CR(A,C, sd, sd, σ) > simU
CR(A,B, sd, sd, σ).

– Extended Sorensen:

* simA
CR(A,B, simσs ) = σ· 45 +σ· 45 +0+0

4 = σ · 2
5 ,

* simU
CR(A,B, ss, ss, σ) = σ · 4

9 ,

* simA
CR(A,C, simσs ) = simU

CR(A,C, ss, ss, σ) = 4
5 .

Then for every 0 < σ < 1: simA
CR(A,C, simσs ) > simA

CR(A,B, Ssimσs ) and
simU

CR(A,C, ss, ss, σ) > simU
CR(A,B, ss, ss, σ).

– Extended Symmetric Anderberg:

* simA
CR(A,B, simσa) = σ· 89 +σ· 89 +0+0

4 = σ · 4
9 ,

* simU
CR(A,B, sa, sa, σ) = σ · 8

11 ,

* simA
CR(A,C, simσa) = simU

CR(A,C, sa, sa, σ) = 8
9 .

Then for every 0 < σ < 1: simA
CR(A,C, simσa) > simA

CR(A,B, simσa) and
simU

CR(A,C, sa, sa, σ) > simU
CR(A,B, sa, sa, σ).

– Extended Sokal and Sneath 2:

* simA
CR(A,B, simσss) = σ· 13 +σ· 13 +0+0

4 = σ · 1
6 ,

* simU
CR(A,B, sss, sss, σ) = σ · 1

7 ,

* simA
CR(A,C, simσss) = simU

CR(A,C, sss, sss, σ) = 1
3 .

Then for every 0 < σ < 1: simA
CR(A,C, simσss) > simA

CR(A,B, simσss) and
simU

CR(A,C, sss, sss, σ) > simU
CR(A,B, sss, sss, σ).

– Extended Ochiai:

* simA
CR(A,B, simσo ) =

σ· 1√
2

+σ· 1√
2

+0+0
4 = σ · 1

2
√

2 ≈ σ · 0.354,

* simU
CR(A,B, so, so, σ) = σ · 1√

2·
√

3 + 0 ≈ σ · 0.408,

* simA
CR(A,C, simσo ) = simU

CR(A,C, so, so, σ) = σ · 1√
2 ≈ σ · 0.707.

Then for every 0 < σ < 1: simA
CR(A,C, simσo ) > simA

CR(A,B, simσo ) and
simU

CR(A,C, so, so, σ) > simU
CR(A,B, so, so, σ).

– Extended Kulczynski 2:

* simA
CR(A,B, simσku) = σ· 34 +σ· 34 +0+0

4 = σ · 3
8 ,

* simU
CR(A,B, sku, sku, σ) = σ · 5

12 ,

* simA
CR(A,C, simσku) = simU

CR(A,C, sku, sku, σ) = 3
4 .

Then for every 0 < σ < 1: simA
CR(A,C, simσku) > simA

CR(A,B, simσku) and
simU

CR(A,C, sku, sku, σ) > simU
CR(A,B, sku, sku, σ).
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– Mixed CN-based Jaccard Measure:
Let A,B,C ∈ Arg(L) such that:

* A = 〈{p, p→ t}, t〉,

* B = 〈{p ∧ q}, p ∧ q〉,

* C = 〈{p ∧ q}, p〉.

CR(A) = {A1}, CR(B) = {B1}, CR(C) = {C1}, where:

* A1 = 〈{p, p→ t}, t〉,

* B1 = 〈{p ∧ q}, p ∧ q〉,

* C1 = 〈{p}, p〉.

We obtain:

* simA
CR(A,B, simσcnj) = simU

CR(A,B, sj, scnj, σ) = 0,

* simA
CR(A,C, simσcnj) = simU

CR(A,C, sj, scnj, σ) = σ · 1
2 .

Then for every 0 < σ < 1: simA
CR(A,C, simσj ) > simA

CR(A,B, simσj ) and
simU

CR(A,C, sj, scnj, σ) > simU
CR(A,B, sj, scnj, σ).

From the principle Dominance, sim(A,B) ≥ sim(A,C) while for every 0 < σ <

1, simA
CR(A,B, simσy ) > simA

CR(A,C, simσy ) and simU
CR(A,C, sx, sy, σ) >

simU
CR(A,B, sx, sy, σ).

[Strict Dominance] For the syntactic measures x ∈ {j, d, s, a, ss, o, ku}, the ex-
ample used above for Dominance, satisfies the conditions of Strict Monotony, i.e.
sim(A,B) > sim(A,C) while for every 0 < σ < 1, simA

CR(A,B, simσx) >
simA

CR(A,C, simσx) and simU
CR(A,C, sx, sx, σ) > simU

CR(A,B, sx, sx, σ).

[Independent Distribution] Let σ s.t. 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku} and
y ∈ {j, d, s, a, ss, o, ku, cnj} with the condition that if y = cnj then x = j,
otherwise y = x. Let A,B,A′, B′ ∈ Arg(L) such that:

– A = 〈{p, q, (p ∧ q)→ r}, r〉,

– B = 〈{p, q ∧ s, (p ∧ q)→ t}, t〉,

– A′ = 〈{p, q, (p ∧ q)→ r}, r〉,

– B′ = 〈{p, q ∧ s, (p ∧ q)→ t}, t ∧ s〉.

CR(A) = {A1}, CR(B) = {B1}, CR(A′) = {A′1}, CR(B′) = {B′1}, where:
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– A1 = 〈{p, q, (p ∧ q)→ r}, r〉,

– B1 = 〈{p, q, (p ∧ q)→ t}, t〉,

– A′1 = 〈{p, q, (p ∧ q)→ r}, r〉,

– B′1 = 〈{p, q ∧ s, (p ∧ q)→ t}, t ∧ s〉.

From Proposition 21, because A′, B′ are concise arguments:

simA
CR(A′, B′, simσy ) = simσy (A′1, B′1),

simU
CR(A′, B′, sx, sy, σ) = simσy (A′1, B′1).

Let compute the similarity degree for each similarity measure.

– Extended Jaccard:

* simA
CR(A,B, simσj ) = simU

CR(A,B, sj, sj, σ) = σ · 1
2

* simσj (A′1, B′1) = σ · 1
5

Then for every 0 < σ < 1: simA
CR(A,B, simσj ) 6= simA

CR(A′, B′, simσj ) and
simU

CR(A,B, sj, sj, σ) 6= simU
CR(A′, B′, sj, sj, σ).

– Extended Dice:

* simA
CR(A,B, simσd) = simU

CR(A,B, sd, sd, σ) = σ · 2
3

* simσd(A′1, B′1) = σ · 1
3

Then for every 0 < σ < 1: simA
CR(A,B, simσd) 6= simA

CR(A′, B′, simσd) and
simU

CR(A,B, sd, sd, σ) 6= simU
CR(A′, B′, sd, sd, σ).

– Extended Sorensen:

* simA
CR(A,B, simσs ) = simU

CR(A,B, ss, ss, σ) = σ · 4
5

* simσs (A′1, B′1) = σ · 1
2

Then for every 0 < σ < 1: simA
CR(A,B, simσs ) 6= simA

CR(A′, B′, Ssimσs ) and
simU

CR(A,B, ss, ss, σ) 6= simU
CR(A′, B′, ss, ss, σ).

– Extended Symmetric Anderberg:

* simA
CR(A,B, simσa) = simU

CR(A,B, sa, sa, σ) = σ · 8
9

* simσa(A′1, B′1) = σ · 2
3

Then for every 0 < σ < 1: simA
CR(A,B, simσa) 6= simA

CR(A′, B′, simσa) and
simU

CR(A,B, sa, sa, σ) 6= simU
CR(A′, B′, sa, sa, σ).

– Extended Sokal and Sneath 2:
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* simA
CR(A,B, simσss) = simU

CR(A,B, sss, sss, σ) = σ · 1
3

* simσss(A′1, B′1) = σ · 1
9

Then for every 0 < σ < 1: simA
CR(A,B, simσss) 6= simA

CR(A′, B′, simσss) and
simU

CR(A,B, sss, sss, σ) 6= simU
CR(A′, B′, sss, sss, σ).

– Extended Ochiai:

* simA
CR(A,B, simσo ) = simU

CR(A,B, so, so, σ) = σ · 2
3

* simσo (A′1, B′1) = σ · 1
3

Then for every 0 < σ < 1: simA
CR(A,B, simσo ) 6= simA

CR(A′, B′, simσo ) and
simU

CR(A,B, so, so, σ) 6= simU
CR(A′, B′, so, so, σ).

– Extended Kulczynski 2:

* simA
CR(A,B, simσku) = simU

CR(A,B, sku, sku, σ) = σ · 2
3

* simσku(A′1, B′1) = σ · 1
3

Then for every 0 < σ < 1: simA
CR(A,B, simσku) 6= simA

CR(A′, B′, simσku) and
simU

CR(A,B, sku, sku, σ) 6= simU
CR(A′, B′, sku, sku, σ).

– Mixed CN-based Jaccard Measure:

* simA
CR(A,B, simσcnj) = simU

CR(A,B, sj, scnj, σ) = σ · 1
2

* simσcnj(A′1, B′1) = σ · 1
5

Then for every 0 < σ < 1: simA
CR(A,B, simσcnj) 6= simA

CR(A′, B′, simσcnj) and
simU

CR(A,B, sj, scnj, σ) 6= simU
CR(A′, B′, sj, scnj, σ).

From the axiom Independent Distribution, sim(A,B) = sim(A′, B′) while
simA

CR(A,B, simσx) 6= simA
CR(A′, B′, simσx) and simU

CR(A,B, sx, σ) 6= simU
CR(A′, B′, sx, σ).

[Triangle Inequality] Let A,B,C ∈ Arg(L) such that:

– A = 〈{p ∧ q, (p ∧ q)→ t}, p ∧ t〉,

– B = 〈{p ∧ q, q ∧ (p ∧ q)→ t}, t〉,

– C = 〈{p, q ∧ (p ∧ q)→ t}, t〉.

CR(A) = {A1}, CR(B) = {B1, B2}, CR(C) = {C1}, where:

– A1 = 〈{p ∧ q, (p ∧ q)→ t}, p ∧ t〉,

– B1 = 〈{p ∧ q, (p ∧ q)→ t}, t〉, B2 = 〈{p, q ∧ (p ∧ q)→ t}, t〉,

– C1 = 〈{p, q ∧ (p ∧ q)→ t}, t〉.
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Let compute for every 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku}.

– simA
CR(A,C, simσx) = 0,

– simA
CR(A,B, simσx) = σ+σ+0

3 = σ · 2
3 ,

– simA
CR(B,C, simσx) = (1−σ)+1+1

3 = 1− σ · 1
3 .

Then, 1 + simA
CR(A,C, simσx) < simA

CR(A,B, simσx) + simA
CR(B,C, simσj ), because

1 < 1 + 1
3 · σ.

Let see for Mixed CN-based Jaccard Measure:

– simA
CR(A,C, simσcnj) = (1− σ) · 1

3 ,

– simA
CR(A,B, simσcnj) = (σ+σ+0)+3(1−σ)· 13

3 = σ · 2
3 + (1− σ) · 1

3 ,

– simA
CR(B,C, simσcnj) = (1−σ)+1+1

3 = 1− σ · 1
3 .

Then 1 + simA
CR(A,C, simσcnj) < simA

CR(A,B, simσcnj) + simA
CR(B,C, simσcnj), be-

cause 1 + (1− σ) · 1
3 < 1 + 1

3 · σ + (1− σ) · 1
3 .

Let y ∈ {j, d, s, a, ss, o, ku, cnj}, from the axiom Triangle Inequality, 1 +
simA

CR(A,C, simσy ) ≥ simA
CR(A,B, simσy ) + simA

CR(B,C, simσy ) while 1 +
simA

CR(A,C, simσy ) < simA
CR(A,B, simσy ) + simA

CR(B,C, simσy ).

Proof. [Proposition 21] If A,B ∈ Arg(L) are concise arguments, then by Proposition
13(1) and Definition 49 we have that CR(A) = {A′} such that Supp(A′) ∼= Supp(A)
and Conc(A′) = Conc(A), and CR(B) = {B′} such that Supp(B′) ∼= Supp(B) and
Conc(B′) = Conc(B). Let σ such that 0 < σ < 1, x ∈ {j, d, s, a, ss, o, ku} and y ∈
{j, d, s, a, ss, o, ku, cnj} with the condition that if y = cnj then x = j, otherwise y = x.
Then we obtain simA

CR(A,B, simσy ) = simσy (A′, B′) and
simU

CR(A,B, sx, sy, σ) = simσy (A′, B′). Finally, from A ≈ A′ and B ≈ B′ we obtain
simσy (A′, B′) = simσy (A,B).
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5.2 Proofs of Chapter 3

5.2.1 Proofs of section 3.2: Similarity-based Gradual Semantics

Proof. [Proposition 22]
Let M = 〈f ,g,n〉 be a well-behaved evaluation method, 〈A,w,R, sim〉 be a SSWAF,
x1, · · · , xk ∈ [0, 1], and X = {A1, · · · , Ak} ⊆ A. Let n((x1, A1), · · · , (xk, Ak)) =
(x′1, · · · , x′k).

• Case 1. X = ∅. Since M = 〈f ,g,n〉 is well-behaved, then from condition 3a (Def.
54), it follows that n() = (). Hence, g() = g(n()) = 0 (from condition 2a (Def.
54)).

• Case 2. k = 1. Since M = 〈f ,g,n〉 is well-behaved, then from condition 3b (Def.
54), n((x1, A1)) = (x1). Hence, g(x1) = g(n((x1, A1))) = x1 (from condition 2b
(Def. 54)).

• Case 3. k > 1. We distinguish two cases:

– Case 3.1. for all i, j ∈ {1, · · · , k}, with i 6= j, sim(Ai, Aj) = 0. From Propo-
sition 23, n((x1, A1), · · · , (xk, Ak)) = (x1, · · · , xk). Hence, g(x1, · · · , xk) =
g(n((x1, B1), · · · , (xk, Bk))).

– Case 3.2. There exist some similarities between elements ofX . LetB1, · · · , Bk

be arguments such that for all i, j ∈ {1, · · · , k}, with i 6= j, sim(Bi, Bj) =
0. From Proposition 23, n((x1, B1), · · · , (xk, Bk)) = (x1, · · · , xk). Further-
more, for all i, j ∈ {1, · · · , k}, sim(Ai, Aj) ≥ sim(Bi, Bj). Since M =
〈f ,g,n〉 is well-behaved, then from condition 3c (Def. 54), g(n((x1, A1), · · · ,
(xk, Ak))) ≤ g(n((x1, B1), · · · , (xk, Bk))). So, g(n((x1, A1), · · · , (xk, Ak)))
≤ g(x1, · · · , xk).

Proof. [Proposition 23]
Let M = 〈f ,g,n〉 be a well-behaved evaluation method, 〈A,w,R, sim〉 be a SSWAF,
x1, · · · , xk ∈ [0, 1], and X = {A1, · · · , Ak} ⊆ A. Let n((x1, A1), · · · , (xk, Ak)) =
(x′1, · · · , x′k). Assume that for all i, j ∈ {1, · · · , k}, with i 6= j, sim(Ai, Aj) = 0. Since
M = 〈f ,g,n〉 is a well-behaved evaluation method, then for every i ∈ {1, · · · , k}, xi =
x′i (from condition 3g (Def. 54)).

Proof. [Theorem 15]
This result follows from Brouwer’s fixed point theorem. Indeed, if a SSWAF, 〈A,w,R, sim〉
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has k arguments, then each semantics S corresponds to a solution of the system of k equa-
tions, StrS(A) =

f

w(A),g
(

n
(

(StrS(B1), B1), · · · , (StrS(Bk), Bk)
))

where {B1, · · · , Bk} = Att(A), for each A ∈ A. Now the result follows from the fact
that the composition of functions f , g and n as presented in Definition 55 is continuous
function, so the k-ary function F : [0, 1]k → [0, 1]k, whose components are given by the
equations of Definition 55 (one per argument), is continuous function on the compact set
[0, 1]k. By Brouwer’s fixed point theorem, F has a fixed point, and that point is a k-tuple
which is a solution of the considered system of equations.

Proof. [Theorem 16]
Let M = 〈f ,g,n〉 ∈ M∗ be an evaluation method. We need to prove that there is one
and only one semantics S such that S is based on M for any SSWAF, 〈A,w,R, sim〉. The
proof contains two steps:

• First, we define one semantics, denoted by S′(M). For that, for each graph SSWAF,
〈A,w,R, sim〉, we need to define a weighting on the arguments. Let us fix a
graph AF = 〈A,w,R, sim〉 and assume a fixed enumeration of the arguments
A = {A1, · · · , An}. We define a sequence {u(i)}+∞

i=1 of vectors from [0, 1]n in the
following way:

– u(1) = (w(A1), · · · ,w(An)).

– In order to define u(i) for each i ≥ 2, we first define the mappingQ : [0, 1]n →
[0, 1]n: Q(v) = [Q1(v), · · · ,Qn(v)], where for every v = (v1, · · · , vn), k ∈
{1, · · · , n},

Qk(v) = f(w(Ak), (5.1)

g(n(v`k(1), · · · , v`k(nk), b
k
1, · · · , bknk))),

where {Bk
1 , · · · , bknk} = AttAF(Ak) and, for every j ≤ nk, `k(j) = m iff

bkj = Am. Then, for each i ≥ 2, we define

u(i) = (u(i)
1 , · · · , u(i)

n ) = Q(u(i−1)) (5.2)

We will prove that the sequence {u(i)}+∞
i=1 converges. Then we define the semantics
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S′ by assigning to the graph the weighting StrS′ such that

(StrS′(A1), · · · , StrS′(An)) = lim
i→+∞

u(i).

(We define a weighting on arguments, in the previously described way, for every
graph.)

• Then we prove that S′ is based on M. Finally, using the same sequence {u(i)}+∞
i=1 ,

we show that every semantics based on M coincides with S′.

Let AF = 〈A,w,R, sim〉 and let A = {A1, · · · , An}. Let {u(i)}+∞
i=1 be the sequence of

vectors constructed above. Let AttAF(Ak) = {bk1, · · · , bknk} ⊆ A, for every j ≤ nk, let
`k(j) = m iff bkj = Am. If u = (u1, · · · , un) and v = (v1, · · · , vn) are two vectors, we
write u ≤ v if and only if for every k ∈ {1, · · · , n} it holds that uk ≤ vk. Suppose that
u ≤ v. We will use the fact that M is a well-behaved evaluation method. For arbitrary
k ∈ {1, · · · , n}, from condition 3e (Def. 54)

g
(

n
(

(u`k(1), A`k(1)), · · · , (u`k(nk), A`k(nk))
))
≤

g
(

n
(

(v`k(1), A`k(1)), · · · , (v`k(nk), A`k(nk))
))

.

Finally, by condition 1a (Def. 54) we have

f

w(Ak),g
(

n
(

(v`k(1), A`k(1)), · · · , (v`k(nk), A`k(nk))
)) ≤

f

w(Ak),g
(

n
(

(u`k(1), A`k(1)), · · · , (u`k(nk), A`k(nk))
)),

i.e.,
Qk(v) ≤ Qk(u).

Thus, we proved
u ≤ v =⇒ Q(v) ≤ Q(u). (5.3)

Consequently, we obtain

u ≤ v =⇒ Q(Q(u)) ≤ Q(Q(v)). (5.4)
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by applying Q to (5.3). Now we can show that for every i ∈ N

u(2) ≤ u(4) ≤ · · · ≤u(2i) ≤ u(2i+1) ≤ · · · ≤ u(3) ≤ u(1). (5.5)

From condition 1a (Def. 54) and equation (5.1) we obtain that

(∀i ∈ N) u(i) ≤ (w(A1), · · · ,w(An)) = u(1).

Specially, u(3) ≤ u(1). From (5.4) we obtain

· · · ≤ u(2i+1) ≤ · · · ≤ u(3) ≤ u(1). (5.6)

From u(3) ≤ u(1) we conclude u(2) ≤ u(4) by (5.3). From (5.4) we obtain

u(2) ≤ u(4) ≤ · · · ≤u(2i) ≤ · · · (5.7)

From u(2) ≤ u(1), by (5.4) we obtain

(∀i ∈ N) u(2i) ≤ u(2i+1). (5.8)

Now (5.5) follows from (5.6), (5.7) and (5.8).

Note that from
u(2i+2) ≤ u(2i+3) ≤ u(2i+1), (5.9)

we can obtain that for every i ∈ N, there exists 0 < π ≤ 1 such that

πu(2i−1) ≤ u(2i).

Now we define πi = sup{π | πu(2i−1) ≤ u(2i)}. Obviously, for every i ∈ N,

πiu(2i−1) ≤ u(2i).

Also, if πu(2i−1) ≤ u(2i), from

u(2i) ≤ u(2i+2) ≤ u(2i+1) ≤ u(2i−1),

we obtain πu(2i+1) ≤ u(2i+2). Consequently,

(∀i ∈ N) πi ≤ πi+1.



5.2. PROOFS OF CHAPTER 3 129

Thus, the sequence {πi}+∞
i=1 is non-decreasing. Since it is also bounded by 1, we obtain

that it converges. Let us denote π = limi→+∞ πi.

Next we prove that π = 1.

Let v = (v1, · · · , vn) ∈ [0, 1]n be a vector and let λ ≤ 1 be a positive number. From the
last condition of Theorem 16, for every k ∈ {1, · · · , n} we obtain

g
(

n
(

(λv`k(1), A`k(1)), · · · , (λv`k(nk), A`k(nk))
))
≥

λg
(

n
(

(v`k(1), A`k(1)), · · · , (v`k(nk), A`k(nk))
))
.

From condition 1a (Def. 54) we derive

f

w(Ak),g
(

n
(

(λv`k(1), A`k(1)), · · · , (λv`k(nk), A`k(nk))
)) ≤

f

w(Ak), λg
(

n
(

(v`k(1), A`k(1)), · · · , (v`k(nk), A`k(nk))
)).

(5.10)

Let g∗ = sup
x∈
⋃+∞
n=0[0,1]n g(x). Note that, by condition 1a (Def. 54), for every r from the

unit interval of reals there exists the function

ϕr : ]f ∗r , f ∗∗r ]→ [0,+∞[

such that f ∗r = limy→g∗− f(r, y), f ∗∗r = limy→0+ f(r, y), and

f(r, ϕr(y)) = y. (5.11)

Note that ϕr is the inverse function of the function obtained by f by fixing the first variable
to be r. Since f is decreasing on the second variable, ϕr is decreasing as well. Also, from
continuity of f we obtain that ϕr is continuous.

It is easy to check that for every k ∈ {1, · · · , n} and every x = (x1, · · · , xn) ∈ [0, 1]n

f(w(Ak), ϕw(Ak)(Qk(x))) =

f

w(Ak),g
(

n
(

(x`k(1), A`k(1)), · · · , (x`k(nk), A`k(nk))
)). (5.12)

If we denote λv = (λv1, · · · , λvn), note that

Qk(λv) = f

w(Ak),g
(

n
(

(λv`k(1), A`k(1)), · · · , (λv`k(nk), A`k(nk))
)). (5.13)



130 CHAPTER 5. APPENDIX

Using (5.12) and (5.13), we can rewrite (5.10) as

Qk(λv) ≤ f(w(Ak), λϕw(Ak)(Qk(v))). (5.14)

Since πiu(2i−1) ≤ u(2i) for every i ∈ N, from (5.3) we obtain Q(u(2i)) ≤ Q(πiu(2i−1)).
Thus,

Qk(u(2i)) ≤ Qk(πiu(2i−1)), (5.15)

for every k ∈ {1, · · · , n}. On the other hand, from (5.14) we obtain

Qk(πiu(2i−1)) ≤ f(w(Ak), πiϕw(Ak)(Qk(u(2i−1)))). (5.16)

From (5.15) and (5.16) we obtain

Qk(u(2i)) ≤ f(w(Ak), πiϕw(Ak)(Qk(u(2i−1)))), (5.17)

i.e.,

u
(2i+1)
k ≤ f(w(Ak), πiϕw(Ak)(u(2i)

k )). (5.18)

From (5.18) we obtain

u
(2i+2)
k

f(w(Ak), πiϕw(Ak)(u(2i)
k ))

u
(2i+1)
k ≤ u

(2i+2)
k , (5.19)

for every k ∈ {1, · · · , n}. Since πi = sup{π | πu(2i−1) ≤ u(2i)}, From (5.19) we obtain
that for every i ∈ N, there exists ki ∈ {1, · · · , n} such that

u
(2i+2)
ki

f(w(Aki), πiϕw(Aki )(u
(2i)
ki

))
≤ πi+1, (5.20)

Note that the sequence {u(2i)}+∞
i=1 converges, since it is non-decreasing (by (5.7)) and

bounded by u(1). Let us denote the limit of the sequence by u∗, i.e.,

lim
i→+∞

u(2i) = u∗.

Note also that the sequence {ki}+∞
i=1 is an infinite sequence, and that all the elements of

the sequence belong to the finite set {1, · · · , n}. Thus, there exists l ∈ {1, · · · , n} such
that l appears infinitely many times in the sequence. Let’s apply limit to the inequality
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(5.20) using the subsequence obtained by taking only those i for which ki = l. We obtain

u∗l
f(w(Al), πϕw(Al)(u∗l ))

≤ π, (5.21)

i.e.,
u∗l ≤ πf(w(Al), πϕw(Al)(u∗l )). (5.22)

We know that π ≤ 1. If π < 1, from the fifth condition of Theorem 16,we obtain

πf(w(Al), πϕw(Al)(u∗l )) < f(w(Al), ϕw(Al)(u∗l )). (5.23)

By (5.11), we have
f(w(Al), ϕw(Al)(u∗l )) = u∗l . (5.24)

From (5.22), (5.23) and (5.24), we obtain u∗l < u∗l ; a contradiction. Thus, π = 1.

Note that the sequence {u(2i+1)}+∞
i=1 converges, since it is non-increasing (by (5.6)) and

bounded (for example, by u(2)). Let us denote the limit of the sequence by u∗, i.e.,

lim
i→+∞

u(2i+1) = u∗.

From (5.5) we obtain
u∗ ≤ u∗.

On the other hand,
πiu(2i−1) ≤ u(2i)

for every i ∈ N. Letting i→ +∞ we obtain

u∗ ≤ u∗.

Consequently, u∗ = u∗, so the sequence {u(i)}+∞
i=1 converges.

Note that the argumentation graph AF is not arbitrary chosen. We define the semantics
S′(M) by let

(StrS′(M)
AF (A1), · · · , StrS′(M)

AF (An)) := lim
i→+∞

u(i),

for every AF = 〈A,w,R, sim〉.

If we let i → +∞ in (5.2), using the first four condition of Theorem 16, we obtain for
every k ∈ {1, · · · , n}

StrS′(M)
AF (Ak) = f

w(Ak),g
(

n
(

(StrS
AF (bk1), bk1), · · · , (StrS

AF (bknk), · · · , b
k
nk

)
)),
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where {bk1, · · · , bknk} = AttAF (Ak). Thus, the semantics S′(M) is based on the evaluation
method M.

Suppose now that there is another semantics S∗ such that S∗ is also based on the method
M. Then, for the vector

v = (StrS∗
AF (A1), · · · , StrS∗

AF (An))

we have Q(v) = v. Let us define the constant sequence v(i) = v, for every i ∈ N. Note
that, by condition 1a (Def. 54), v ≤ u(1).

Since both Q(v(i)) = v(i+1) and Q(u(i)) = u(i+1), applying Q to v(1) ≤ u(1) and using
(5.3) and (5.4) we obtain

(∀i ∈ N) v(2i+1) ≤ u(2i+1)

and

(∀i ∈ N) v(2i) ≥ u(2i).

By letting i→ +∞ we obtain limi→+∞ v(i) = limi→+∞ u(i), i.e.,

StrS∗
AF ≡ StrS′

AF .

5.2.2 Proofs of section 3.3: Principles of Gradual Semantics dealing
with Similarity

Proof. [Theorem 17]
Let S be a gradual semantics based on a well-behaved evaluation method M = 〈f ,g,n〉.
S satisfies:

• Reinforcement:
Let 〈A,w,R, sim〉 be an arbitrary but fixed SSWAF, and A,B ∈ A such that:

– w(A) = w(B),

– Att(A) \ Att(B) = {x}, Att(B) \ Att(A) = {y},

– ∀z ∈ Att(A) ∩ Att(B), sim(x, z) = sim(y, z),

– StrS(x) ≤ StrS(y).
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From Definition 55, we have the following equations:

StrS(A) = f

w(A),g
(

n
(

(StrS(B1), B1), · · · , (StrS(Bk), Bk), (StrS(x), x)
)),

where {B1, · · · , Bk, x} = Att(A).

StrS(B) = f

w(A),g
(

n
(

(StrS(B1), B1), · · · , (StrS(Bk), Bk), (StrS(y), y)
)),

where {B1, · · · , Bk, y} = Att(B).

Case 1: Att(A)∩ Att(B) = ∅. Since M is well behaved, then from conditions 3b
and 2b (both Def. 54) we have: g(n((StrS(x), x))) = g(StrS(x)) = StrS(x)
and g(n((StrS(y), y))) = g(StrS(y)) = StrS(y). If w(A) = w(B) = 0,
then from condition 1c (Def. 54) of well behaved f , StrS(A) = StrS(B) = 0.
If w(A) > 0, then since StrS(x) ≤ StrS(y) and w(A) = w(B) > 0 and f is
decreasing on the second variable (1a Def. 54), then StrS(A) ≥ StrS(B).

Case 2: Att(A) ∩ Att(B) 6= ∅.
Since StrS(x) ≤ StrS(y) then from condition 3e (Def. 54) of a well behaved

M, g
(

n
(

(StrS(B1), B1), · · · , (StrS(Bk), Bk), (StrS(x), x)
))
≤

g
(

n
(

(StrS(B1), B1), · · · , (StrS(Bk), Bk), (StrS(y), y)
))

.

If w(A) = 0, then from condition 1c (Def. 54) of well behaved f , StrS(A) =
StrS(B) = 0.
If w(A) > 0, since f is decreasing on the second variable and w(A) =
w(B) > 0, then StrS(A) ≥ StrS(B).

• Sensitivity to Similarity:
Let 〈A,w,R, sim〉 be a SSWAF, and A,B ∈ A such that w(A) = w(B) and there
exists a bijective function f : Att(A)→ Att(B) such that:

– ∀x ∈ Att(A), StrS(x) = StrS(f(x)),

– ∀x, y ∈ Att(A), sim(x, y) ≥ sim(f(x), f(y)).

Let Att(A) = {A1, · · · , Ak}, Att(B) = {B1, · · · , Bk} and ∀i ∈ {1, · · · , k},
StrS(Ai) = StrS(Bi) = xi.
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Hence StrS(A) = f

w(A),g
(

n
(

(x1, A1), · · · , (xk, Ak)
)) and

StrS(B) = f

w(B),g
(

n
(

(x1, B1), · · · , (xk, Bk)
)).

From condition 3c (Def. 54), g
(

n
(

(x1, A1), · · · , (xk, Ak)
))
≤

g
(

n
(

(x1, B1), · · · , (xk, Bk)
))

.

Since w(A) = w(B) and f is decreasing on the second variable (condition 1a from
Definition 54), then StrS(A) ≥ StrS(B).

• Monotony:
Let 〈A,w,R, sim〉 be a SSWAF, and A,B ∈ A, such that

– w(A) = w(B),

– Att(A) ⊂ Att(B),

– If Att(A) 6= ∅, then ∀x ∈ Att(B) \ Att(A), ∀y ∈ Att(A), sim(x, y) = 0.

Case 1. Assume that Att(A) = ∅.
Hence, from Def. 54:

– n() = () from 3a,

– g() = 0 from 2a,

– f(x, 0) = x from 1b, i.e., StrS(A) = w(A).

Let Att(B) = {A1, · · · , Ak}.

Case 1.1. k = 1. Hence StrS(B) = f

w(B),g
(

n
(

(x1, A1)
)).

From condition 3b (Def. 54), n((x1, A1)) = (x1).
From condition 2b (Def. 54), g(x1) = x1.
Hence, StrS(B) = f(w(B), x1).
If x1 = 0 then from 1b (Def. 54), StrS(B) = w(B) = StrS(A).
If x1 > 0 then from 1a (Def. 54), f is decreasing on the second variable,
thus f(w(B), x1) ≤ f(w(B), 0), i.e. f(w(B), x1) ≤ w(B) = StrS(A).
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Case 1.2. k > 1. Let StrS(B) = f

w(B),g
(
x′1, · · · , x′k

).

From conditions 2a, 2b and 2c (Def. 54), g() = g(0) = g(0, · · · , 0) = 0.
From condition 2d (Def. 54) and because ∀i ∈ {1, · · · , k}, x′i ≥ 0,
g(0, · · · , 0) ≤ g(x′1, · · · , x′k). Since w(A) = w(B), f is decreasing on
the second variable then f(w(A),g(0, · · · , 0)) ≥ f(w(B),g(x′1, · · · , x′k)),
i.e. StrS(A) ≥ StrS(B).

Case 2. Assume that Att(A) 6= ∅.
Let Att(A) = {A1, · · · , Ak} and Att(B) = {A1, · · · , Ak, B1, · · · , Bm} such
that ∀i ∈ {1, · · · , k}, ∀j ∈ {1, · · · ,m}, sim(Ai, Bj) = 0.

StrS(A) = f

w(A),g
(

n
(

(StrS(A1), A1), · · · , (StrS(Ak), Ak)
)) =

f

w(A),g
(
x′1, · · · , x′k

).

StrS(B) = f

w(B),g
(

n
(

(StrS(A1), A1), · · · , (StrS(Ak), Ak), (StrS(B1),

B1), · · · , (StrS(Bm), Bm)
)) = f

w(A),g
(
x′′1, · · · , x′′k, y′1, · · · , y′m

).

Let us show first that ∀i ∈ {1, · · · , k}, x′i = x′′i .
From condition 3g (Def. 54), n((x1, A1), · · · , (xk, Ak), (y1, B1)) = (n((x1,

A1), · · · , (xk, Ak)), y1) since ∀i ∈ {1, · · · , k}, sim(Ai, B1) = 0. We repeat
the same operation, and get n((x1, A1), · · · , (xk, Ak), (y1, B1), · · · , (ym, Bm))
= (n((x1, A1), · · · , (xk, AK)), y1, · · · , ym) = (x′1, · · · , x′k, y1, · · · , ym).
From condition 2c (Def. 54), g(x′1, · · · , x′k, 0, · · · , 0) = g(x′1, · · · , x′k).
From condition 2d (Def. 54), g(x′1, · · · , x′k, 0, · · · , 0) ≤ g(x′1, · · · , x′k, y′1, · · · ,
y′m), i.e. g(x′1, · · · , x′k) ≤ g(x′1, · · · , x′k, y′1, · · · , y′m) .
Since w(A) = w(B) and f is decreasing on the second variable, then
f(w(A),g(x′1, · · · , x′k)) ≥ f(w(A),g(x′1, · · · , x′k, y′1, · · · , y′m)). Therefore
StrS(A) ≥ StrS(B).

• Neutrality:
Let 〈A,w,R, sim〉 be a SSWAF, and A,B ∈ A, such that

– w(A) = w(B),

– Att(B) = Att(A) ∪ {x} with StrS(x) = 0,

– If Att(A) 6= ∅, then ∀y ∈ Att(A), sim(x, y) = 0.
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Case 1. Att(A) = ∅:
StrS(A) = w(A) since n() = (), g() = 0 and f(w(A), 0) = w(A) (from 3a,
2a, 1b of Def. 54). StrS(B) = w(B) since from 3b (Def. 54), n((0, x)) = 0,
from 2c (Def. 54) g(0) = g(), from 2a (Def. 54) g() = 0 and from 1b (Def.
54) f(w(B), 0) = w(B) = StrS(B). Therefore StrS(A) = StrS(B).

Case 2. Att(A) 6= ∅:
Let Att(A) = {B1, · · · , Bi} and Att(B) = {B1, · · · , Bi, x}. StrS(A) =

f

w(A),g
(

n
(

(x1, B1), · · · , (xi, Bi)
)) = f(w(A),g(x′1, · · · , x′i)).

StrS(B) = f

w(B),g
(

n
(

(x1, B1), · · · , (xi, Bi), (0, x)
)).

From condition 3g (Def. 54) and given that ∀y ∈ Att(A), sim(x, y) = 0,

g
(

n
(

(x1, B1), · · · , (xi, Bi), (0, x)
))

= g((x′1, · · · , x′i), 0). From 2c (Def.

54), g((x′1, · · · , x′i), 0) = g(x′1, · · · , x′i). Since w(A) = w(B), then StrS(A) =
StrS(B).

Proof. [Theorem 18]
Same reasoning as proof of Theorem 17 (Reinforcement):

Case 1. Att(A) ∩ Att(B) = ∅.
StrS(A) = f(g(n((StrS(x), x)))), StrS(B) = f(g(n((StrS(y), y)))), StrS(x) <
StrS(y) then StrS(A) > StrS(B).

Case 2. Att(A) ∩ Att(B) 6= ∅.
Use the condition C1 instead of condition 3e (Def. 54) and we obtain StrS(A) >
StrS(B).

Proof. [Theorem 19]
Same reasoning as proof of Theorem 17 (Sensitivity to Similarities), but using the condi-
tion C2 instead of condition 3c (Def. 54).

Proof. [Theorem 20]
Same reasoning as proof of Theorem 17 (Monotony), but using the condition C3 instead
of condition 2d (Def. 54).
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5.2.3 Proof of section 3.4: Novel Family of Semantics

Proof. [Theorem 21]
Follows from proof of Theorem 17.

5.2.4 Proofs of section 3.5: Adjustment Functions

Proof. [Proposition 24]
Let see for nwh.
It has been shown in Amgoud and Doder [2019] that the semantics StrSwh always returns
a degree between 0 and 1. Since the adjustment function nwh is based on StrSwh , it there-
fore also returns readjusted values between 0 and 1.

For nrs.
From its definition, we know that each readjusted value is computed as follows:

avg
xi∈{x1,··· ,xk}\{x1}

(
avg(x1,xi)×(2−sim(A1,Ai))

2

)
. Given that avg(x1, xi) ∈ [0, 1] and,

2 − sim(A1, Ai)) ∈ [1, 2] then avg(x1,xi)×(2−sim(A1,Ai))
2 ∈ [0, 1] (and averaging between

values belonging to [0, 1] keeps this interval).

For nρmax.
Let a permutation ρ of {1, · · · , k}, x1, · · · , xk ∈ [0, 1].We denote the returned vector
of the parameterised function nρmax((x1, B1), · · · , (xk, Bk)) = (x′ρ(1), · · · , x′ρ(k)). From
Definition 58, x′ρ(1) = xρ(1) and the permutation doesn’t change the value therefore x′ρ(1) ∈
[0, 1].
Moreover from Definition 1, we know that sim : A × A → [0, 1]. Additionally with
Definition 58, we can compute the domain ∀i ∈ {2, · · · , k}, of x′ρ(i). We have the equation
x′ρ(i) = xρ(i) · (1− max(sim(Bρ(1), Bρ(i)), · · · , sim(Bρ(i−1), Bρ(i)))).
We can rewrite the equation in a more simplifying way: x′i = xi · (1 − s) where xi, s ∈
[0, 1]. Given that (1 − s) ∈ [0, 1], the product of two values belonging to [0, 1] stay in
[0, 1], that’s why x′i ∈ [0, 1]. Do the same for any x′i, ∀i ∈ {2, · · · , k}, x′ρ(i) ∈ [0, 1].

Proof. [Proposition 25]
Let f , g be well-behaved functions.

• 3a) nrs() = (), from Definition 57,

• 3b) nrs((x1, A1)) = (x1), from Definition 57,

• 3c) Let x1, · · · , xk ∈ [0, 1], A1, · · · , Ak, B1, · · · , Bk ∈ Arg such that ∀i, j ∈
{1, · · · , k} i 6= j, sim(Ai, Aj) ≥ sim(Bi, Bj). For any i ∈ {1, · · · , k},
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avg
xi∈{x1,··· ,xk}\{xj}

(
avg(xj ,xi)×(2−sim(Aj ,Ai))

2

)
≤ avg

xi∈{x1,··· ,xk}\{xj}

(
avg(xj ,xi)×(2−sim(Bj ,Bi))

2

)
.

Therefore g(nrs((x1, A1), · · · , (xk, Ak))) ≤ g(nrs((x1, B1), · · · , (xk, Bk))).

• 3d) From Definition 57, if nrs((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k), then each

x′i = avg
xi∈{x1,··· ,xk}\{xj}

(
avg(xj ,xi)×(2−sim(Aj ,Ai))

2

)
, i.e. given that sim(Aj, Ai) ≤ 1 if

∃i ∈ {1, · · · , k} such that xi > 0 then ∀i ∈ {1, · · · , k}, x′i > 0.

• 3e) LetA1, · · · , Ak ∈ Arg, x1, · · · , xk, y1, · · · , yk ∈ [0, 1] such that ∀i ∈ {1, · · · , k},
xi ≤ yi.

From Definition 57, ∀i ∈ {1, · · · , k}, avg
xi∈{x1,··· ,xk}\{xj}

(
avg(xj ,xi)×(2−sim(Aj ,Ai))

2

)
≤

avg
yi∈{y1,··· ,yk}\{yj}

(
avg(yj ,yi)×(2−sim(Aj ,Ai))

2

)

• 3f) nrs is symmetric because the average, the product and the similarity are sym-
metric.

• 3g) nrs violate this condition: Let x1 = 0.4, x2 = 0.8 and A1, A2 ∈ Arg such
that sim(A1, A2) = 0. However, nrs((x1, A1)) = (0.4), nrs((x1, A1), (x2, A2)) =
(0.6, 0.6) and so (0.4, 0.8) 6= (0.6, 0.6).

Let g such that it satisfies the condition (C3), i.e. g(x1, · · · , xk, y) < g(x1, · · · , xk, z)
if y < z.

• C1: LetA1, · · · , Ak ∈ Arg, x1, · · · , xk, y1, · · · , yk ∈ [0, 1] such that ∀i = 1, · · · , k,
xi ≤ yi and ∃i = 1, · · · , k s.t. xi < yi. Let nrs((x1, A1), · · · , (xk, Ak)) = (x′1, · · · ,
x′k) and nrs((y1, A1), · · · , (yk, Ak)) = (y′1, · · · , y′k).
Since only the strength increases for every xi compared to yi and because for any

sim(Aj, Ai), avg
xi∈{x1,··· ,xk}\{xj}

(
avg(xj ,xi)×(2−sim(Aj ,Ai))

2

)
is strictly increasing on xi

and xj , therefore g(nrs((x1, A1), · · · , (xk, Ak))) < g(nrs((y1, A1), · · · , (yk, Ak))).

• C2: Let x1, · · · , xk ∈ [0, 1], A1, · · · , Ak, B1, · · · , Bk ∈ Arg such that ∀i, j ∈
{1, · · · , k}, sim(Ai, Aj) ≥ sim(Bi, Bj) and ∃i, j ∈ {1, · · · , k} s.t. sim(Ai, Aj) >
sim(Bi, Bj) and (xi > 0 or xj > 0). Let nrs((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k)
and nrs((x1, B1), · · · , (xk, Bk)) = (y′1, · · · , y′k).
Hence ∀i ∈ {1, · · · , k}, x′i ≤ y′i. Moreover, since ∃i, j ∈ {1, · · · , k} s.t. sim(Ai, Aj)
> sim(Bi, Bj) and (xi > 0 or xj > 0), then ∃i ∈ {1, · · · , k} s.t. x′i < y′i. Therefore
g(nrs((x1, A1), · · · , (xk, Ak))) < g(nrs((x1, B1), · · · , (xk, Bk))).
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Proof. [Proposition 26] Let f , g be well-behaved functions.

• nρmax is well-behaved.

– 3a) nρmax() = (), from Definition 58,

– 3b)nρmax((x1, A1)) = (x1), from Definition 58 x′ρ(1) = xρ(1).

– 3c) g(nρmax((x1, A1), · · · , (xk, Ak))) ≤ g(nρmax((x1, B1), · · · , (xk, Bk))) if ∀i,
j ∈ {1, · · · , k}, sim(Ai, Aj) ≥ sim(Bi, Bj). For any permutation ρ which re-
spect the condition in Definition 58, let nρmax((x1, A1), · · · , (xk, Ak)) = (x′1, · · ·
, x′k) and nρmax((x1, B1), · · · , (xk, Bk)) = (y′1, · · · , y′k). Given that the first el-
ement of the tuple doesn’t change, x′1 = y′1. For the other value only the
similarity score change between the computation of x′ρ(i) and y′ρ(i) such that
∀i, j ∈ {1, · · · , k} i 6= j, sim(Ai, Aj) ≥ sim(Bi, Bj). Therefore ∀i ∈
{2, · · · , k}, x′i ≤ y′i. Moreover from condition 2d (Def. 54), g is monotonic,
then g(nρmax((x1, A1), · · · , (xk, Ak))) ≤ g(nρmax((x1, B1), · · · , (xk, Bk))).

– 3d) Let x1, · · · , xk ∈ [0, 1] and ρ a permutation of {x1, · · · , xk} such that
if xρ(i) = 0 then xρ(i+1) = 0 ∀i < k, or i = k. Then if there exists a xi > 0,

from the above condition xρ(1) > 0. Therefore from conditions 2b, 2c and 2d
(Def. 54), g(nρmax((x1, A1), · · · , (xk, Ak))) ≥ xρ(1) > 0.

– 3e) Let x1, · · · , xk, y1, · · · , yk ∈ [0, 1] such that ∀i ∈ {1, · · · , k}, xi ≤ yi.
From Definition 58, x′ρ(1) = xρ(1) and ∀i ∈ {2, · · · , k}, x′ρ(i) = xρ(i) · (1 −
max(sim(Bρ(1), Bρ(i)), · · · , sim(Bρ(i−1), Bρ(i)))) and same for any y′ρ(i).

Case 1. i = 1, xρ(1) ≤ yρ(1) then x′ρ(1) ≤ y′ρ(1).

Case 2. i > 1, ∀i ∈ {2, · · · , k}, xi · (1− si) ≤ yi · (1− si), because xi ≤ yi.

Therefore ∀i ∈ {1, · · · , k}, x′ρ(i) ≤ y′ρ(i). Add the condition 2d (Def. 54), g is
monotonic, thus g(nρmax((x1, A1), · · · , (xk, Ak))) ≤ g(nρmax((y1, A1), · · · ,
(yk, Ak))).

– 3f) nρmax is symmetric thanks to the fixed permutation ρ.

– 3g) Let xk+1 ∈ [0, 1],Ak+1 ∈ Arg, nρmax((x1, A1), · · · , (xk, Ak)) = (x′ρ(1), · · · ,
x′ρ(k)). If ∀i ∈ {1, · · · , k}, sim(Ai, Ak+1) = 0, then either Ak+1 is not the
maximal similarity with Ai or it is with 0.
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Case 1. sim(Ai, Ak+1) is not the maximal score of similarity for Ai, then
Ak+1 doesn’t affect the strength of x′ρ(i).

Case 2. sim(Ai, Ak+1) = 0 is the maximal score of similarity: then the strength
of x′ρ(i) = xρ(i) · 1 = xρ(i), i.e. with or without Ak+1 the strength of x′ρ(i)

doesn’t change.

Do this reasoning for each other arguments, we obtain thatAk+1 doesn’t affect
the strength of any x′ρ(i). More, having 0 similarity with any other attackers
implies that the maximal similarity of Ak+1 is 0, then xk+1 = x′k+1. Therefore
nρmax((x1, A1), · · · , (xk+1, Ak+1)) = (nρmax((x1, A1), · · · , (xk, Ak)), xk+1).

• nρmax is continuous on each numerical variables.
From Definition 58, each variables are compute by polynomial function (x′ρ(i) =
xρ(i) · (1− max(sim(Bρ(1), Bρ(i)), · · · , sim(Bρ(i−1), Bρ(i))))) which are continuous
function.

• Let λ ∈ [0, 1], and g well-behaved such that g(λx′1, · · · , λx′k) ≥ λg(x′1, · · · , x′k).
Let nρmax((x1, B1), · · · , (xk, Bk)) = (x′1, · · · , x′k), then let us show that nρmax((λx1,

B1), · · · , (λxk, Bk)) = (λx′1, · · · , λx′k).
nρmax((λx1, B1), · · · , (λxk, Bk)) =(

λxρ(1),

λxρ(2) · (1− max(sim(Bρ(1), Bρ(2)))),
· · · ,
λxρ(k) · (1− max(sim(Bρ(1), Bρ(k)), · · · , sim(Bρ(k−1), Bρ(k))))

)
= (λx′ρ(1), · · · , λx′ρ(k)).

• Let gsum which is well-behaved and ρmax decreasing permutation according to the
strength.

C1. Let x1 = 1, x2 = 0.5, y1 = 1, y2 = 0.8,A1, A2 ∈ Arg such that sim(A1, A2) =
1. gsum(nρmax

max ((x1, A1), (x2, A2))) = (1, 0) as gsum(nρmax
max ((y1, A1), (y2, A2))) =

(1, 0), because 0.5 · (1− 1) = 0.8 · (1− 1) = 0.

C2. Let x1 = x2 = 1, x3 = 0.5, A1, A2, A3, B1, B2, B3 ∈ Arg such that sim(A1,

A2) = 0.8, sim(A1, A3) = 0.8, sim(A2, A3) = 0.5 and sim(B1, B2) = 0.8,
sim(B1, B3) = 0.8, sim(B2, B3) = 0.3. gsum(nρmax

max ((x1, A1), (x2, A2), (x3, A3)
)) = (1, 0.2, 0.1) as gsum(nρmax

max ((x1, B1), (x2, B2), (x3, B3))) = (1, 0.2, 0.1),
because 0.5 · (1− max(0.8, 0.5)) = 0.5 · (1− max(0.8, 0.3)) = 0.1.
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Proof. [Proposition 27] This result follows the Proposition 26.

Proof. [Proposition 28] Let f , g be well-behaved functions.

• nwh is well-behaved.

– 3a) nwh() = (), from Definition 59,

– 3b) nwh((x1, A1)) = (x1), from Definition 59 StrSwh(A1) = x1
1 .

– 3c) g(nwh((x1, A1), · · · , (xk, Ak))) ≤ g(nwh((x1, B1), · · · , (xk, Bk))) if ∀i, j
∈ {1, · · · , k}, sim(Ai, Aj) ≥ sim(Bi, Bj). From Amgoud and Doder [2019],
we know that the Weighted h-Categoriser semantics satisfies the principle
Attack-Sensitivity (Principle 12) which means for nwh a Sensitivity to Similar-
ity. Then let nwh((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k) and nwh((x1, B1), · · ·
, (xk, Bk)) = (y′1, · · · , y′k), hence ∀i ∈ {1, · · · , k}, x′i ≤ y′i. Given that g is
well behaved therefore g(x′1, · · · , x′k) ≤ g(y′1, · · · , y′k).

– 3d) Let ∃i ∈ {1, · · · , k} s.t. xi > 0. From Amgoud and Doder [2019], we
know that the Weighted h-Categoriser semantics satisfies the principle Re-
silience (Principle 8) which means in this case that nwh will return a value
x′i > 0. Then from Definition 54, with conditions (b), (c) and (d), we have
g(nwh((x1, A1), · · · , (xk, Ak))) ≥ x′i > 0.

– 3e) Let A1, · · · , Ak ∈ Arg and x1, · · · , xk, y1, · · · , yk ∈ [0, 1] such that ∀i ∈
{1, · · · , k}, xi ≤ yi. Let nwh((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k) and
nwh((y1, A1), · · · , (yk, Ak)) = (y′1, · · · , y′k). Since the similarities are the same
because they are the same arguments, this means in this case that ∀i ∈ {1, · · · ,
k}, xi

1+
∑

j∈{1,··· ,k}\{i}
x′j×sim(Aj ,Ai)

≤ yi
1+

∑
j∈{1,··· ,k}\{i}

y′j×sim(Aj ,Ai)
,

i.e. x′i ≤ y′i.

– 3f) nwh is symmetrical because for any couple (xi, Ai), its new value x′i is
calculated thanks to a system of equations and therefore does not depend on
their order.

– 3g) Let x1, · · · , xk+1 ∈ [0, 1] andA1, · · · , Ak+1 ∈ Arg such that ∀i ∈ {1, · · · ,
k}, sim(Ai, Ak+1) = 0. Let nwh((x1, A1), · · · , (xk+1, Ak+1)) = (x′1, · · · , x′k+1)
and nwh((x1, A1), · · · , (xk, Ak)) = (y′1, · · · , y′k). From Definition 59:
For any i ∈ {1, · · · , k}:

y′i = xi
1 + ∑

j∈{1,··· ,k}\{i}
y′j × sim(Aj, Ai)
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and
x′i = xi

1 + ∑
j∈{1,··· ,k}\{i}

x′j × sim(Aj, Ai) + x′k+1 × 0

that means ∀i ∈ {1, · · · , k}, x′i = y′i.
For i = k + 1:

x′k+1 = xk+1

1 + ∑
j∈{1,··· ,k}

x′j × 0 = xk+1

1 = xk+1.

• nwh is continuous on each numerical variables.
From Definition 59, all variables are computed by using continuous operators.

• Let λ ∈ [0, 1], and g well-behaved such that g(λx′1, · · · , λx′k) ≥ λg(x′1, · · · , x′k).
Let nwh((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k), then let us show that nwh((λx1, A1),
· · · , (λxk, Ak)) ≥ (λx′1, · · · , λx′k).
For any i ∈ {1, · · · , k}:

x′i = xi
1 + ∑

j∈{1,··· ,k}\{i}
x′j × sim(Aj, Ai)

y′i = λxi
1 + ∑

j∈{1,··· ,k}\{i}
y′j × sim(Aj, Ai)

If λ ∈ {0, 1} then λx′i = y′i. If λ ∈]0, 1[ then λx′i ≤ y′i, because: if we reduce the
score of the y′i by multiplying in the equations λxi then it reduces the y′i but if the y′i
reduces then it reduces the y′j and therefore it increases y′i. This is why applying λ in
the equations decreases less than applying it after solving the system of equations.

• Let g such that it satisfies the condition (C3), i.e. g(x1, · · · , xk, y) < g(x1, · · · , xk, z)
if y < z.

C1. Let A1, · · · , Ak ∈ Arg and x1, · · · , xk, y1, · · · , yk ∈ [0, 1]. Let nwh((x1, A1),
· · · , (xk, Ak)) = (x′1, · · · , x′k) and nwh((y1, A1), · · · , (yk, Ak)) = (y′1, · · · , y′k).
With the same reasoning as in the proof for the condition 3e) of the Defini-
tion 54, if we add the knowledge that ∃i ∈ {1, · · · , k} such that xi < yi

then xi
1+

∑
j∈{1,··· ,k}\{i}

x′j×sim(Aj ,Ai)
< yi

1+
∑

j∈{1,··· ,k}\{i}
y′j×sim(Aj ,Ai)

. Therefore ∀j ∈

{1, · · · , k}, x′j ≤ y′j and x′i < y′i. Given that g satisfies the condition (C3),
hence g(nwh((x1, A1), · · · , (xk, Ak))) < g(nwh((y1, A1), · · · , (yk, Ak))).

C2. Let x1, · · · , xk ∈ [0, 1], A1, · · · , Ak, B1, · · · , Bk ∈ Arg such that ∀i, j ∈
{1, · · · , k}, sim(Ai, Aj) ≥ sim(Bi, Bj) and ∃i, j ∈ {1, · · · , k} s.t. sim(Ai, Aj)



5.2. PROOFS OF CHAPTER 3 143

> sim(Bi, Bj) and (xi > 0 or xj > 0). Let nwh((x1, A1), · · · , (xk, Ak)) =
(x′1, · · · , x′k) and nwh((x1, B1), · · · , (xk, Bk)) = (y′1, · · · , y′k). With the same
reasoning as in the proof for the condition 3c) of the Definition 54, adding
the knowledge that ∃i, j ∈ {1, · · · , k} s.t. sim(Ai, Aj) > sim(Bi, Bj) and
(xi > 0) then xi

1+
∑

j∈{1,··· ,k}\{i}
x′j×sim(Aj ,Ai)

< xi
1+

∑
j∈{1,··· ,k}\{i}

y′j×sim(Bj ,Bi)
. There-

fore ∀j ∈ {1, · · · , k}, x′j ≤ y′j and x′i < y′i. Given that g satisfies the condition
(C3), hence g(nwh((x1, A1), · · · , (xk, Ak))) < g(nwh((x1, B1), · · · , (xk, Bk))).

• Let λ ∈ [0, 1], x1, · · · , xk ∈ [0, 1] and f ,g are well behaved such that g(λx1, · · · ,
λxk) ≥ λg(x1, · · · , xk). From the previous proofs it follows from Theorem 16 that
〈f ,g,nwh〉 ∈M∗.

Proof. [Proposition 29] For nrs:
Let A1, A2 ∈ Arg such that sim(A1, A2) = 1 and x1 = 0.4, x2 = 0.6. nrs((x1, A1), (x2,

A2)) = (x′1, x′2) = (0.5, 0.5). Then x′1 > x1.

For nρmax:
Let A1, · · · , Ak ∈ Arg, x1, · · · , xk and nρmax((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k).
From Definition 58, ∀i ∈ {1, · · · , k}, either x′i = xi or x′i = xi ·X such that X ∈ [0, 1]
then x′i ≤ xi.

For nwh:
Let G = 〈A,w,R, sim〉 be a SSWAF, A1, · · · , An ∈ A and x1, · · · , xn ∈ [0, 1] such that
nwh((x1, A1), · · · , (xk, Ak)) = (Str(A1), · · · , Str(Ak)). For any i ∈ {1, · · · , n}, from
Definition 59, Str(Ai) = xi

1+X such that X ∈ [0,+∞[ therefore Str(Ai) ≤ xi.

Proof. [Proposition 30] For nrs:
LetA1, A2 ∈ Arg such that sim(A1, A2) = 1 and x1 = 0, x2 = 0.2. nrs((x1, A1), (x2, A2))
= (x′1, x′2) = (0.1, 0.1). Then x′2 6= x2.

For nρmax:
Let sim a similarity measure,A1, · · · , Ak ∈ Arg and x1, · · · , xk ∈ [0, 1]. From Definition
58, we know that ρ is a fixed permutation on the set {1, · · · , k} such that if xρ(i) = 0 then
xρ(i+1) = 0 ∀i < k, or i = k. Additionally, each adjusted value is computed as follows:
xρ(k) ·(1−max(sim(Aρ(1), Aρ(k)), · · · , sim(Aρ(k−1), Aρ(k)))). Therefore, @i ∈ {2, · · · , k},
such that if xρ(i) 6= 0 then xρ(i−1) = 0. Consequently, initially strictly positive values are
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not affected by values of 0 (no matter how similar they are) and 0 values remain at 0
anyway.

For nwh:
Let G = 〈A,w,R, sim〉 be a SSWAF,A1, · · · , Ak, B1 ∈ A and x1, · · · , xk, y ∈ [0, 1] such
that y = 0. From Definition 59 we have nwh((x1, A1), · · · , (xk, Ak)) =
(Deg1(A1), · · · , Deg1(Ak)) = Deg1

Swh
G′ , where

Deg1
Swh
G′ =


Deg1(A1) = x1

1+Deg1(A2)×sim(A1,A2)+···+Deg1(Ak)×sim(A1,Ak)

· · ·
Deg1(Ak) = xk

1+Deg1(A1)×sim(Ak,A1)+···+Deg1(An−1)×sim(An,An−1)

and nwh((x1, A1), · · · , (xk, Ak), (y,B1)) = (Deg2(A1), · · · , Deg2(Ak), Deg2(B1)) = Deg2
Swh
G′ ,

where

Deg2
Swh
G′ =



Deg2(A1) = x1
1+Deg2(A2)×sim(A1,A2)+···+Deg2(Ak)×sim(A1,Ak)+Deg2(B1)×sim(A1,B1)

· · ·
Deg2(Ak) = xk

1+Deg2(A1)×sim(Ak,A1)+···+Deg2(An−1)×sim(An,An−1)+Deg2(B1)×sim(Ak,B1)

Deg2(B1) = y1
1+Deg2(A1)×sim(B1,A1)+···+Deg2(An)×sim(B1,An)

Given that y = 0, Deg2(B1) = 0, so for every i ∈ {1, · · · , k}, Deg1(Ai) = Deg2(Ai).

Proof. [Proposition 31] For nrs:
Let A1, · · · , Ak ∈ Arg, x1, · · · , xk and nrs((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k).

From Definition 57: ∀j ∈ {1, · · · , k}, x′j = avg
xi∈{x1,··· ,xk}\{xj}

(
avg(xj ,xi)×(2−sim(Aj ,Ai))

2

)
.

Then ∀xj ∈]0, 1], ∀xi ∈ [0, 1], avg(xj, xi) > 0 then avg(xj ,xi)×(2−sim(Aj ,Ai))
2 > 0 (because

sim(Aj, Ai) ∈ [0, 1]) and so avg
xi∈{x1,··· ,xk}\{xj}

(
avg(xj ,xi)×(2−sim(Aj ,Ai))

2

)
> 0, i.e. x′j > 0.

For nρmax:
LetA1, A2 ∈ Arg such that sim(A1, A2) = 1 and x1 = 1, x2 = 1. nρmax

max ((x1, A1), (x2, A2)) =
(x′1, x′2) = (1, 0). Then x′2 = 0 while x2 > 0.

For nwh:
Let G = 〈A,w,R, sim〉 be a SSWAF, A1, · · · , Ak ∈ A, x1, · · · , xk ∈ [0, 1] and
nwh((x1, A1), · · · , (xk, Ak)) = (Str(A1), · · · , Str(Ak)). For any i ∈ {1, · · · , k}, from
Definition 59, Str(Ai) = xi

1+X such thatX ∈ [0,+∞[ therefore if xi > 0, then Str(Ai) >
0.

Proof. [Proposition 32] For nrs:
Let A1, A2, A3 ∈ Arg such that sim(A1, A2) = 0.5, sim(A1, A3) = 0, sim(A2, A3) = 0
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and x1 = 1, x2 = 0.8, x3 = 0 then nrs((x1, A1), (x2, A2)) = (0.675, 0.675) and
nrs((x1, A1), (x2, A2), (x3, A3)) = (0.5875, 0.5375, 0.45). Therefore, we have that 0.675+
0.675 = 1.35 < 1.575 = 0.5875 + 0.5375 + 0.45, i.e.
gsum(nrs((x1, A1), (x2, A2))) < gsum(nrs((x1, A1), (x2, A2), (x3, A3))).

For nρmax:
Follows from Proposition 30.

For nwh:
Follows from Proposition 30.

Proof. [Proposition 33] For nrs:
Follows from Example 3, when α = 1, gsum(nrs((x1, B1), (x2, B2), (x3, B3))) = 1.5.

For nρmax:
Let x1, · · · , xk ∈ [0, 1] and A1, · · · , Ak ∈ Arg such that ∀i, j ∈ {1, · · · , n}, sim(Ai, Aj)
= 1. Let nρmax((x1, A1), · · · , (xk, Ak)) = (x′1, · · · , x′k). From Definition 58, we know that
∃i ∈ {1, · · · , k} such that x′i = xi and ∀j ∈ {1, · · · , k} \ {i}, x′j = 0. Hence,
gsum(nρmax((x1, A1), · · · , (xk, Ak))) ≤ 1.

For nwh:
Follows from Example 3, when α = 1, gsum(nwh((x1, B1), (x2, B2), (x3, B3))) = 1.5.

5.2.5 Proofs of section 3.6: Instances of Semantics

Proof. [Theorem 22] Snρmax ∈ S∗ follows the result of the Proposition 26. The functions
ffrac and gsum satisfy the constraints 1,2,4 of the Theorem 16 (already proved in Amgoud
and Doder [2019]) and combining with nρmax they satisfy the constraints 3 and 4 (proof of
Proposition 26).

Proof. [Theorem 23] The semantics Snrs satisfies all the principles except Neutrality.

Reinforcement. For any SSWAF, 〈A,w,R, sim〉, for all A,B ∈ A, such that

• w(A) = w(B),

• Att(A) \ Att(B) = {x}, Att(B) \ Att(A) = {y},
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• ∀z ∈ Att(A) ∩ Att(B), sim(x, z) = sim(y, z),

• StrSnrs (x) ≤ StrSnrs (y).

Let Att(A) ∩ Att(B) = {z1, · · · , zk}.
Using the conditions of Reinforcement we have: ∀j ∈ {1, · · · , k},

avg
zi∈{z1,··· ,zk}\{zj}

(
avg(StrSnrs (zj),StrSnrs (x))×(2−sim(zj ,x))

2

)
≤

avg
zi∈{z1,··· ,zk}\{zj}

(
avg(StrSnrs (zj),StrSnrs (y))×(2−sim(zj ,y))

2

)
when StrSnrs (x) ≤ StrSnrs (y).

Then nrs

(
(StrSnrs (z1), z1), · · · , (StrSnrs (zk), zk), (StrSnrs (x), x)

)
≤

nrs

(
Str(Snrs (z1), z1), · · · , (StrSnrs (zk), zk), (StrSnrs (y), y)

)
. That implies

w(A)

1+
k∑
i=1

(
nrs

(
(StrSnrs (z1),z1),··· ,(StrSnrs (zk),zk),(StrSnrs (x),x)

)) ≥
w(B)

1+
k∑
i=1

(
nrs

(
(StrSnrs (z1),z1),··· ,(StrSnrs (zk),zk),(StrSnrs (y),y)

)) , i.e. StrSnrs (A) ≥ StrSnrs (B).

Same reasoning in the case of StrSnrs (A) > 0 and StrSnrs (x) < StrSnrs (y) and
we obtain StrSnrs (A) > StrSnrs (B).

Sensitivity to similarity. For any SSWAF, 〈A,w,R, sim〉, for all A,B ∈ A such that
w(A) = w(B), there exists a bijective function f : Att(A)→ Att(B) such that:

• ∀x ∈ Att(A), StrSnrs (x) = StrSnrs (f(x)),

• ∀x, y ∈ Att(A), sim(x, y) ≥ sim(f(x), f(y)),

Same reasoning as Reinforcement and Strict Reinforcement, but instead of increase
the strength, we increase the score of similarity. In this case the more similar the
attackers, the stronger the attacked argument. Because the similarity score is sub-
tracted.

Monotony. For any SSWAF, 〈A,w,R, sim〉, for all A,B ∈ A, such that

• w(A) = w(B),

• Att(A) ⊂ Att(B),

• If Att(A) 6= ∅, then ∀x ∈ Att(B) \ Att(A), ∀y ∈ Att(A), sim(x, y) = 0.

Case 1. Att(A) = ∅:
Let Att(B) = {z1, · · · , zk}.
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Case 1.1. @zi ∈ Att(B) such that StrSnrs (zi) > 0 then

gsum

(
nrs

(
(StrSnrs (z1), z1), · · · , (StrSnrs (zk), zk)

))
= gsum

(
nrs

())
= 0. Then StrSnrs (A) = StrSnrs (B).

Case 1.2. ∃zi ∈ Att(B) such that StrSnrs (zi) > 0 then

gsum

(
nrs

(
(StrSnrs (z1), z1), · · · , (StrSnrs (zk), zk)

))
> gsum

(
nrs

())
because from the proposition 3 the functions satisfy the conditions 2a, 3a,
3d (Def. 54). Therefore if StrSnrs (A) > 0, then StrSnrs (A) > StrSnrs (B).

Case 2. Att(A) 6= ∅:
Let Att(A) = {z1, · · · , zk}.
Let Att(B) = {z1, · · · , zk, zk+1, · · · , zk+m} such that ∀i ∈ {k + 1, · · · , k +
m}, ∀j ∈ {1, · · · , k}, sim(zi, zj) = 0.
Let nrs((StrSnrs (z1), z1), · · · , (StrSnrs (zk), zk)) = (z′1, · · · , z′k).
Start by develop the sum of output value of the function nrs on the attackers
of A.
Denote by

xij = avg(StrSnrs (zj), StrSnrs (zi))× (2− sim(zj, zi))
2 .

Then we can rewrite

z′j = avg
StrSnrs (zi)∈{StrSnrs (z1),··· ,StrSnrs (zk)}\{StrSnrs (zj)}(

avg(StrSnrs (zj), StrSnrs (zi))× (2− sim(zj, zi))
2

)

= x1j + · · ·+ xj−1j + xj+1j + · · ·+ xkj
k − 1 .

And thus,
∑k
i=1 z

′
i =

2x12 + · · ·+ 2x1k + 2x23 + · · ·+ 2x2k + · · ·+ 2xk−1k

k − 1

= X

k − 1 .

Do the same for nrs on the attackers of b.

z′j = x1j + · · ·+ xj−1j + xj+1j + · · ·+ xk+mj

k − 1 +m
.
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Case 2.1. ∀i ∈ {k + 1, · · · , k +m}, StrSnrs (zi) = 0.
Let us take the minimal case where the attackers in b which are not in a have
zero strength. StrSnrs (zi) > 0.
Then adding the fact that each attacker zi such that i ∈ {k + 1, · · · , k + m}
have zero similarity with any other attackers, we can instantiate the score of
the m last value:

∀j ∈ {1, · · · k}, z′j = x1j + · · ·+ xj−1j + xj+1j + · · ·+ xkj
k − 1 +m

+

m·StrSnrs (zj)
2

k − 1 +m
.

∀j ∈ {k + 1, · · · , k +m}, z′j =
StrSnrs (z1)

2 + · · ·+ StrSnrs (zk)
2

k − 1 +m
.

We obtain the following sum:
∑k+m
i=1 z′i =

2x12 + · · ·+ 2x1k + 2x23 + · · ·+ 2x2k + · · ·+ 2xk−1k

k − 1 +m
+

2m · (StrSnrs (z1)
2 + · · ·+ StrSnrs (zk)

2 )
k − 1 +m

= X +m(StrSnrs (z1) + · · ·+ StrSnrs (zk))
k − 1 +m

.

To summarise we want to check that

X

k − 1 ≤
X +m(StrSnrs (z1) + · · ·+ StrSnrs (zk))

k − 1 +m
.

The value of X depends on the strength of each attackers zi and on there sim-
ilarities.
For a fix set of strength, the lower value of X is when each argument are fully
similar and the biggest value of X is when they didn’t exist any similarities.

Case 2.1.1. sim ≡ 0, i.e. the maximal score of X .
nrs((x1, A1), · · · , (xk, Ak)) =

 avg
xi∈{x1,··· ,xk}\{x1}

(
avg(x1, xi)× (2)

2

)
, . . . ,

avg
xi∈{x1,··· ,xk}\{xk}

(
avg(xk, xi)× (2)

2

).
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=
(k − 1) · x1 + x2 + · · ·+ xk

2k − 2 , · · · ,

x1 + x2 + · · ·+ (k − 1) · xk
2k − 2

.
The sum of each element in this case is equal to:

(2k − 2) · x1 + · · · , (2k − 2) · xk
2k − 2 =

k∑
i=1

xi.

In other words, gsum(x1, · · · , xk) = gsum(nrs((x1, A1), · · · , (xk, Ak))),
i.e.

∑k
i=1 z

′
i = ∑k

i=1 StrSnrs (zi).
Then in this case X = (k − 1)∑k

i=1 StrSnrs (zi).
Thus in the maximal case we have an equality:

(k − 1)∑k
i=1 StrSnrs (zi)
k − 1

= (k−1)∑k
i=1 StrSnrs (zi)+m(StrSnrs (z1)+···+StrSnrs (zk))

k−1+m

=
k∑
i=1

StrSnrs (zi).

Therefore
k∑
i=1

StrSnrs (zi) =
k+m∑
i=1

StrSnrs (zi)

⇐⇒ X

k − 1 = X +m(StrSnrs (z1) + · · ·+ StrSnrs (zk))
k − 1 +m

⇐⇒ (k − 1)(StrSnrs (z1) + · · ·+ StrSnrs (zk))
k − 1 =

(k − 1)(StrSnrs (z1) + · · ·+ StrSnrs (zk))
k − 1 +m

+

⇐⇒ m(StrSnrs (z1) + · · ·+ StrSnrs (zk))
k − 1 +m

=⇒ StrSnrs (A) = StrSnrs (B).

Case 2.1.2. ∃i, j ∈ {1, · · · , k}, i 6= j, s.t. sim(zi, zj) > 0.
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We know that

X = 2x12 + · · ·+ 2x1k + 2x23 + · · ·+ 2x2k + · · ·+ 2xk−1k

k − 1 +m

and ∀i, j ∈ {1, · · · , k}, i 6= j,

2xij = avg(StrSnrs (zj), StrSnrs (zi))× (2− sim(zj, zi)).

That’s why, increasing the similarity (sim(zj, zi)) will decrease 2xij,
hence X . From the case 2.1.1 we can rewrite when sim ≡ 0,

X

k − 1 = X +m(StrSnrs (z1) + · · ·+ StrSnrs (zk))
k − 1 +m

.

By

⇐⇒ (k − 1)α
k − 1 = (k − 1)α +mα

k − 1 +m
.

And when the similarities increase, as we have seen before α will de-
crease to β, i.e. α < β and we obtain:

⇐⇒ (k − 1)β
k − 1 <

(k − 1)β +mα

k − 1 +m

=⇒ StrSnrs (A) > StrSnrs (B).

Case 2.2. ∃i ∈ {k+1, · · · , k+m} such that StrSnrs (zi) > 0 and StrSnrs (A) > 0.
(Strict Monotony)
Given that the method StrSnrs satisfy the Strict Reinforcement principle, in-
creasing the strength of an attacker of b which is not in a will strictly decrease
the score of b. We denote by δ ∈]0,+∞[, the strength of attackers which is in
b and not in a.

(k − 1)β
k − 1 <

(k − 1)β +mα

k − 1 +m
<

(k − 1)β +m(α + δ)
k − 1 +m

=⇒ StrSnrs (A) > StrSnrs (B).

Neutrality. Let G = 〈A,w,R, sim〉 be a SSWAF, x1, x2, x3 ∈ A such that sim(x1,

x2) = 0.5, sim(x1, x3) = 0, sim(x2, x3) = 0 and StrSnrs (x1) = 1, StrSnrs (x2)
= 1, StrSnrs (x3) = 0.
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nrs((StrSnrs (x1), x1), (StrSnrs (x2), x2)) = (0.75, 0.75).

nrs((StrSnrs (x1), x1), (StrSnrs (x2), x2), (StrSnrs (x3), x3)) =
(0.625, 0.625, 0.5).

Let A,B ∈ A such that w(A) = w(B) and Att(A) = {x1, x2}, Att(B) =
{x1, x2, x3}.

Then Strnrs(A) =

w(A)

1 +
2∑
i=1

(
nrs

(
(Strnrs(x1), x1), (Strnrs(x2), x2)

))

= w(A)
1 + 1.5 .

Strnrs(B) =

w(B)

1 +
3∑
i=1

(
nrs

(
(Strnrs(x1), x1), (Strnrs(x2), x2), (Strnrs(x3), x3)

))

= w(B)
1 + 1.75 .

Therefore when w(A) > 0, StrSnrs (A) > StrSnrs (B).

Proof. [Theorem 24] From Proposition 28 and Amgoud and Doder [2019], 〈ffrac,gsum,

nwh〉 ∈ M∗ then Snwh ∈ S∗. From Theorem 21, Snwh satisfies Reinforcement, Monotony,
Neutrality and Sensitivity to Similarity. Moreover from Proposition 28 we know that
〈ffrac,gsum,nwh〉 satisfies the conditions (C1), (C2), (C3) then from Theorems 18, 19 and
20, it satisfies also the strict versions, i.e. all the principles of the section 3.3.

Proof. [Theorem 25] Let us show that:

Strnmaxρ ≡ Strnrs ≡ Strnwh ≡ Strh.

The difference between these functions come from the function of adjustment, that’s why
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if
k∑
i=1

(
n
(

(Strn(B1), B1), · · · , (Strn(Bk), Bk)
))

= ∑
Bi∈Att(A)

Strh(Bi) the theorem is

verified.

For Strnmaxρ , if sim ≡ 0 then ∀i ∈ {1, · · · , k}, x′ρ(i) = xρ(i), i.e. Strnmaxρ ≡ Strh.

For Strnrs , we know from the proof of the Theorem 23 (Monotony) that in the case
of sim ≡ 0, the sum of the output of nrs is equal to the sum of the numerical input.

For Strnwh , if sim ≡ 0 then ∀i ∈ {1, · · · , k}, x′i = xi
1+0 = xi, i.e. Strnwh ≡ Strh.
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